

Multi-Context Shopping Optimization
Design Document

Team Number: sdMay20-23

Clients/Advisors: Goce Trajcevski & Ashfaq Khokhar

Team Members:

Max Garton
Ethan Shoemaker

Jesrik Gomez
Karla Montoya

Nate Wernimont
Arnoldo Montoya-Gamez

Team Email: sdmay20-23@iastate.edu

Website: http://sdmay20-23.sd.ece.iastate.edu/

Revised: October 6, 2019 / v1

1

Executive Summary

Development Standards & Practices Used
The following development standards and practice apply to this project:
Electronic Circuits:

● Safety
● Reliability
● Durability
● Efficiency

Software Practices:
● Agile development
● Lean development (fail-fast)

Engineering Standards:
● Modularity
● Reliability
● Scalability
● Performance

Summary of Requirements

Functional Requirements
● A device measures and reports inventory status of household goods (such as milk) to a

remote server
● The remote server tracks the status of inventory for each user
● A remote server computes the optimal destinations and routes for shopping given a

variety of constraints (price, time, location, convenience, delivery speed)
● An android application allows users to retrieve optimal shopping routes from the remote

server
○ The android application allows users to add or remove (and adjust quantity) of

additional items to their personal shopping list
Environmental Requirements

● A device measuring and reporting inventory statuses would require wifi in the user’s
home (and potentially in their fridge)

● The device requires a power source
● The device must be able to operate in a refrigerator (down to 0 degrees Celsius)

Economic Requirements
● Microcontrollers, sensors, power sources and housings for the inventory

measuring/reporting device
● Two central servers, one for data collection and one for recommendations, will be

needed

2

● Smart phones (Android devices) will be needed to use the mobile app.

Applicable Courses from Iowa State University Curriculum
● COM S 227

○ Object-Oriented Design
● COM S 228 & COM S 311

○ Data Structures and Algorithm Efficiency
● COM S 309

○ Project Planning, and Versioning
● S E 339

○ Software Architecture
● S E 319

○ User Interfacing
● CPR E 288

○ Sensor Applications and Embedded Systems
● CPR E 388

○ Android Application Development
● ENGL 314

○ Reporting, Documenting, and Technical Communication
● STAT 330

○ Introduction to Statistics
● CPR E 308

○ Operating System basics, Inter-Process Communication, and File Management
● COM S 363

○ Database Management
● S E 329

○ Software Project Management
● CPR E 430

○ Information and Networking Security
● CPR E 489

○ Data Communication and Client-Server Paradigms

New Skills/Knowledge acquired that was not taught in courses
We expect to learn and research the following knowledge areas in order to be successful in this
project:

● System architecture design
● Cloud computing
● Full-stack development
● Hardware design
● Requirements development

3

Table of Contents
Executive Summary 2

Development Standards & Practices Used 2
Summary of Requirements 2
Applicable Courses from Iowa State University Curriculum 3
New Skills/Knowledge acquired that was not taught in courses 3
Table of Contents 4
List of Figures 7
List of Tables 8

1 Introduction 8
1.1 Acknowledgement 8
1.2 Problem Statement 8
1.3 Operational Environment 8
1.4 Requirements 9
1.5 Intended Users and Uses 9
Assumptions 10

The users' home has wifi 10
The user owns a GPS and Data enabled Android device 10

Limitations 10
The product shall not be too expensive 10
The product should have minimal impact on WiFi throughput 10
The product should not overuse the smartphone’s hardware (battery, RAM, CPU,
storage, WiFi) 10
The only user interfaces of the project will be within the Android application. 11

1.7 Expected End Product and Deliverables 11

2. Specifications and Analysis 11
2.1 Proposed Design 11
2.2 Design Analysis 12
2.3 Development Process 13
2.4 Design Plan 13

3. Statement of Work 14
3.1 Previous Work And Literature 14
3.2 Technology Considerations 14
3.3 Task Decomposition 16
3.4 Possible Risks And Risk Management 16
3.5 Project Proposed Milestones and Evaluation Criteria 17

4

3.6 Project Tracking Procedures 17
3.7 Expected Results and Validation 17
Expected Results 17
Validation 17

4. Project Timeline, Estimated Resources, and Challenges 18
4.1 Project Timeline 18
4.2 Feasibility Assessment 19
4.3 Personnel Effort Requirements 20
4.4 Other Resource Requirements 21
4.5 Financial Requirements 21

5. Testing and Implementation 21
5.1 Interface Specifications 22

Sensor to Raspberry Pi 22
Raspberry Pi to Remote Server 22
Remote Server to Android App 22

5.2 Hardware and software 22
5.3 Functional Testing 23
5.4 Non-Functional Testing 23
5.5 Process 24
5.6 Results 24

6. Closing Material 25
6.1 Conclusion 25
6.2 References 25

5

List of Figures

Figure 1: System Component Diagram (p. 11)
Figure 2: Project Timeline Gantt Chart (p. 16)
Figure 3: Project Testing & Iterative Development Process Diagram (p. 22)

List of Tables
Table 1: Personnel Effort Requirements (p. 18)

1 Introduction

1.1 Acknowledgement
The team thanks the Iowa State University department of Electrical and Computer Engineering
for giving us a resources, guidance and expert consultation. We appreciate the Electronic
Technology Group (ETG) for providing us with our team website server and hardware
components for the project. Thank you to Goce Trajcevksi for meeting with us weekly to give us
guidance and advice.

1.2 Problem Statement
Consumers are presented with many different ways to shop (going to a favorite store, going to
the closest store, or going to the store where an item’s price is lowest, taking the most efficient
route to reach several stores). How can a consumer know that the choice they’ve made is the
best choice? How can we provide an optimal shopping recommendation to a consumer using a
combination of contextual information such as the user’s current inventory, the user’s current
location, the user’s shopping list, stores in proximity to the user, hours of the stores, and the
stores’ availability and prices for items?

Our solution is to develop a system that utilizes a microcontroller to automatically monitor the
quantity of an item that a user has in their household and communicate the data to a remote
server that tracks the user’s inventory of several items. This inventory data would be accessible
and modifiable on a smartphone app so that the user can view it and make any necessary
updates. Then, the user would be able to utilize this application to create a shopping list (items
can be added automatically when supply is low, or the user can manually add and remove
items). We would then develop a remote server that creates recommendations for shopping

6

based on the user’s current location, inventory data, the supply of items at nearby stores, and
other contextual data to suggest an optimal way for the user to shop.

1.3 Operational Environment
The microcontroller device that measures the user’s inventory is expected to be stored within
range of a WiFi connection (with internet service). If the device is stored inside a refrigerator,
this may block or severely limit the connection. The device will also need a power source (either
via a powered USB port or a power outlet) to function.

1.4 Requirements
Functional Requirements

● A microcontroller measures and reports inventory status of household goods (such as
milk) to a remote server

● The remote server tracks the status of inventory for each user
● A remote server computes the optimal destinations and routes for shopping given a

variety of constraints (price, time, location, convenience, delivery speed)
● An android application allows users to retrieve optimal shopping routes from the remote

server
○ The android application allows users to add or remove (and adjust quantity) of

additional items to their personal shopping list
Environmental Requirements

● A device measuring and reporting inventory status would require wifi in the user’s home
(and potentially in their fridge)

● The device requires a power source
● The device must be able to operate in a refrigerator (down to 0 degrees Celsius)

Economic Requirements
● Microcontrollers, sensors, power sources and housings for the inventory

measuring/reporting device
● Smart phones (Android devices) will be needed to use the mobile app.

1.5 Intended Users and Uses
This solution is intended to be used by any consumer that shops regularly.

● Families in an urban and suburban setting
● Members of apartments who share kitchen and other household supplies

The main use cases of the solution are:

● Automatically tracking supply or inventory of a household item, such as milk, and
updating the shopping list to reflect a low supply

● Maintaining a shopping list curated by the user

7

● Viewing optimal recommended shopping patterns based on contextual information and
given priorities (the user can prioritize going to the closest stores, spending the lowest
amount of money overall, getting the items as fast as possible, and other options)

● Viewing a family member’s shopping list (the above use case extended to multiple
people)

 1.6 Assumptions and Limitations
In order to narrow the scope of the problem statement, we introduce the following assumptions
and limitations:

Assumptions

The users' home has wifi
For the project, we are assuming the refrigerator scale has a suitable WiFi connection. Without it
being connected to WiFi, the inventory sensor’s data cannot be used to make shopping
recommendations.

The user owns a GPS and Data enabled Android device
Because our whole project wraps around the idea of sending notifications to users, we will not
be able to do this unless our user owns an Android device with the required technology.
Also, to figure out whether stores are nearby we will

Limitations

The product shall not be too expensive
The sensor devices should have a reasonable cost (less than $25 per sensor for the finalized
product). The servers used for the project should be of minimal cost.

The product should have minimal impact on WiFi throughput
The sensor devices should only send data over WiFi and the internet when necessary (when
the inventory has changed or during initial setup).

The product should not overuse the smartphone’s hardware (battery, RAM,
CPU, storage, WiFi)
Any algorithmic computation (such as recommending shopping routes) should be done on a
server and not on the user’s device. This is to ensure that the user interface on the Android
application is responsive.

8

The only user interfaces of the project will be within the Android application.

Because Android is the most common mobile operating system, we will develop our mobile
application on Android first. If time allows, a web application or iPhone application with the user
interface may be developed.

1.7 Expected End Product and Deliverables
The final product delivery will be split into a proof-of-concept, minimum viable product, and a
final product deliverable. The proof-of-concept and minimum viable product (MVP) will be
delivered by the end of the Fall 2019 semester. The finalized product will be delivered at the
end of the Spring 2020 semester. An overall design manual of the product and its architecture
will also be provided for any future development.

1. Proof of Concept (December 1, 2019)
a. The proof of concept prototype will demonstrate the capability of such a system

to measure and track the supply of household items, communicate the data to a
server, show the data to a user on a mobile device, and recommend an optimal
way to shop based on the given data and user inputs.These may be individual
working components, but the larger system may not be connected yet.

2. Minimum Viable Product (March 15, 2020)
a. The minimum viable product is the overall system connected, where each

component listed in the proof of concept is completed and integrated so that the
system functions. Functionality may be limited at this point (the recommendation
may not be based on all information or the user’s input).

3. Finalized Product (April 15, 2020)
a. The finalized product would have complete functionality, supporting all use

cases described. The recommendation feature is extended to take into account
other users’ (family members) locations and shopping lists, optimizing the
shopping experience for a whole household instead of one user.

2. Specifications and Analysis

2.1 Proposed Design
● Our current approach includes using simple analog sensors that can be interfaced to a

widely available microcontroller in order to monitor the current contents in a user’s home
○ The current plan is to use a Raspberry Pi as our microcontroller, and pressure or

weight sensors to sense products in our fridge.

9

○ Because we plan on using an analog pressure sensor, the raspberry pi will
decide to update the server if we only have “2/12 eggs”, or we are “Almost out of
milk”. This will require the user to calibrate an “empty” and “full” weight for the
item being measured by the system.

● The microcontroller will connect to wifi, and will interface directly with our server, sending
it the quantity of tracked items we have on our fridge.

○ As previously mentioned, if the raspberry pi decides we are low on some product,
it will update the server through the internet.

○ The Raspberry Pi will communicate with the remote server via an encrypted
TCP/IP channel to guarantee confidentiality

● After our server receives product quantity data, if the quantity is below a certain
threshold we will notify our users they are running low.

● There will be an Android application that allows the user to manually input products that
they need to shop for

○ The application displays the current shopping list, which includes items that were
automatically added based on the sensor data

○ The user can add or remove items to the list, or update quantities needed.
● Our database will be a simple SQL server instance and our data will be stored in simple

key-value pair format.
● The Android application will also be the interface the user will use to compute optimal

routes for what to purchase.
○ The optimal routes are computed by remote server and displayed on the

application’s user interface.
○ The user can choose whether to focus on time or cost.
○ These optimal routes will initially be perfect, which means that we will be using

NP-hard algorithms initially (weighted set cover, TSP)
■ This will later be relaxed to be approximate versions of these algorithms

2.2 Design Analysis
Our proposed solution, explained in section 2.1 above, with the plan for each component
explained in section 2.4, will theoretically address our problem statement. At this point in the
project, everything is based on research, hence the details of each component or interfaces
within the system are subject to change as we prototype and improve on the current design.
The current design’s strengths are its simplicity and low cost (minimal hardware costs).
However, the current design’s two biggest weaknesses are that it may not be user friendly (this
is an area where we are still working to improve the design) and that it might have limited
functionality for recommendations (which will be built more in the second semester of the
project).

We plan to iteratively design each component. This means that the finalized designs may be
completely different than the prototype designs that we have documented as of yet. For

10

example, we may use a smaller, lower power microcontroller (the current design uses a
full-sized raspberry pi) in a later design.

Our proposed solution does not address any security concerns. This includes encrypted
communication; encrypting customer sensitive information, both in transit and at rest; preventing
people from using a man in the middle attack with our devices; preventing tampering with our
Raspberry Pis; and securing our databases. We acknowledge that this project does introduce
security risks and concerns, and there are methods of mitigation, but our priority is to build the
functionality for our use cases first.

2.3 Development Process
Throughout the Fall semester, we will be following more of a waterfall development process.
This will and has allowed us to aggregate requirements, develop initial plans, and gradually
provide plans at a finer level. Then, in the Spring semester, we will be relying on an Agile
approach. An Agile approach will allow us to build an initial workable solution, then iterate on it
to provide more and more features.

2.4 Design Plan

Figure 1: System Component Diagram

The planned handling of each use case is explained below:

● Automatically tracking supply or inventory of a household item, such as milk, and
updating the shopping list to reflect a low supply

○ A pressure sensor (or scale sensor) is connected to a raspberry pi
microcontroller. The microcontroller is constantly monitoring the measurement
from the scale. When this component is first set up by the user, the user
calibrates the sensor by setting the “empty” and “full” weight values. When the
measurement from the scale reaches a threshold set by the user, the
microcontroller sends an update to the remote inventory server with the new
data.

● Maintaining the shopping list

11

○ The inventory server automatically adds items to a user’s shopping list when the
quantity of that item (indicated by the inventory sensor data sent by the raspberry
pi) falls below a certain threshold set by the user from the Android application.

○ The user can manually add or remove items to the shopping list from the Android
application. They can also update the quantity of the items needed.

● Viewing optimal recommended shopping patterns based on contextual information and
given priorities (the user can prioritize going to the closest stores, spending the lowest
amount of money overall, getting the items as fast as possible, and other options)

○ The user requests shopping recommendations from the Android application. The
user selects their desired cost to optimize (money, time, convenience, etc). The
application then sends API requests to the recommendation service in a remote
server. That server then computes and sends the application shopping
recommendations. The recommendations are displayed in the user interface of
the Android application. The user can accept a recommendation and the
application will update the user’s inventory, assuming that the user completed the
recommended shopping route and that they purchased the items.

● Viewing optimal recommended shopping patterns for multiple users (multiple people who
can shop)

○ The implementation is similar to the above use case, but the location of all users
who are shopping is included. The recommendation service finds an optimal
combination of shopping routes so that all items on the shopping list are
purchased and the routes are optimized in some way.

3. Statement of Work

3.1 Previous Work And Literature
A senior design team at Iowa State University worked on creating a “smart bin” device that
measures the quantity of an item based on the measured weight, combined with software that
helps businesses restock products more efficiently [1]. While this project aims to solve a similar
problem, the user that we are targeting is a general consumer or shopper, rather than a
business. The project had a higher cost than our anticipated cost (their project required $80
minimum purchase of microcontrollers and sensor modules, while our anticipated cost is under
$60). In addition, the Multi-Context Shopping Optimization project includes the possibility of
extending the optimization to multiple shoppers, which differentiates it from the past project.

3.2 Technology Considerations
Strengths and weaknesses different technologies that may be used for the project are listed
below. Bolded technologies indicate that the team chose to utilize them.

12

● Microcontroller
○ Raspberry Pi 4 (and Raspberry Pi Zero W)

■ Strengths: The team has experience with projects using it. It is well
documented and supported. It allows flexibility in programming
languages. The board has all of the

■ Weaknesses: It’s expensive compared to other microcontroller options. It
has high power consumption and features that would not be used by this
solution.

○ Other Linux-based microcontrollers
■ Strength: Most raspberry pi alternatives are cheaper than the raspberry

pi. They also allow flexibility in programming languages.
■ Weaknesses: These boards aren’t documented or supported as much as

the raspberry pi or arduino.
○ Arduino Nano IOT

■ Strengths: The team has experience with projects using it. It is well
supported and documented. It costs less than most other microcontrollers

■ Weaknesses: It requires us to write programs in C. The board may be tied
to Arduino’s IOT platform (it may not allow us to easily connect to our own
services).

● Web Server
○ NodeJS

■ Strengths: The team has experience with NodeJS. It also supports open
source libraries. Highly scalable.

■ Weaknesses: NodeJS has relatively new, immature tooling. Coding using
it can get messy with callbacks.

● Mobile Application
○ Android

■ Strengths: The team has experience developing Android applications.
Android is well-documented as a development platform and supports
many open source libraries.

○ iOS
■ Strengths: It would allow more users to utilize this project’s product.
■ Weaknesses: No one on the team has experience developing iOS

applications.
● Data Storage

○ SQL
■ Strengths: Most of the team is familiar with SQL databases and querying.

It is also fairly well supported.
■ Weaknesses: Constrains us to using relational data models.

● Cloud Computing & Modularization
○ Microsoft Azure

■ Strengths: The team has experience using Azure to deploy microservices
and web applications. Azure also has a free tier for services that should

13

satisfy our needs for this project. It has many options for app hosting
features. Azure is well documented and has many tutorials for creating
and deploying various web applications and services.

■ Weaknesses: Azure isn’t as open-source friendly as other cloud
computing options.

○ Amazon Web Services (AWS)
■ Strengths: AWS is more open source friendly than Microsoft Azure. AWS

has many services and is a well documented platform.
■ Weaknesses: Team isn’t as familiar with AWS. Encountered bugs in

Aurora.
○ Docker

■ Strengths: The team has experience using Docker. There are also readily
available container images.

■ Weaknesses: Can be somewhat confusing for anyone who hasn’t used
Docker.

3.3 Task Decomposition
The project is broken down into the following tasks:

● Develop android application
● Create inventory service
● Create inventory tables in database
● Create user service
● Create user tables in database
● Create store service
● Create store tables in database
● Configure raspberry pi
● Connect raspberry pi to inventory service
● Develop raspberry pi application

3.4 Possible Risks And Risk Management
Possible risks and mitigation methods for this project are listed below:

● Security: sending user’s data over the internet (and over WiFi) can present a risk that the
user’s data could be exposed to others.

○ Mitigated by encrypting the data before sending it over the internet. This prevents
the likelihood of someone sniffing the data and seeing sensitive user information.

● Authenticity: if attackers know the data format of the recommended stores, they can
spoof the identity of the server and recommend non-existent or invalid stores to the user

14

○ Mitigated by encrypting the data and by using digital signatures to verify the
integrity of the message as well as the identity of the source

3.5 Project Proposed Milestones and Evaluation Criteria
Key milestones for the project will be based on the use cases or features listed below. Each
milestone is completed by the verification of the use-case functionality. Once we have reached
all of these milestones, we will focus on refining and improving non-functional requirements,
such as security, reliability, performance, and scalability.

● Usability tests
○ Android app allows user to modify checklist
○ Android app syncs checklist with server so it is saved across devices
○ Android app can display establishments having items from their list

● Functional tests
○ In-Home monitoring system can process sensor data
○ In-Home monitoring system can send data to remote server
○ In-Home monitoring system updates checklist when inventory runs low
○ Android app can receive updates from remote server
○ Server can process inventory data to find stores which have items on the list
○ Server can process location of user and determine if shortest path to nearby

establishments

3.6 Project Tracking Procedures

We will be posting a weekly status report about every 10 days to track our progress made
during that period. We will also be documenting our meeting notes after every meeting to record
our thoughts and concerns that don’t make it onto the weekly report. Having separate meeting
notes will also serve as a way to validate what is discussed and decided during those meetings.

Gitlab will also be heavily used to keep track of weekly progress through the issues board. This
will be an easily accessible way to know where we are on more specific tasks. It will also be a
way to look back on more specific tasks that are generalized on the weekly report.

3.7 Expected Results and Validation

Expected Results

The desired outcomes include a system and a user guide which a user can use in order to
accurately track and be reliably notified about items that are running low in their home. They

15

must also be informed of nearby establishments which have the lowest prices and are in closest
proximity to their current location.

Validation

We will confirm our solutions work at a high level by providing test cases with actors performing
actions that should trigger information to be sent to the user, we can test our product. We can
describe an in depth use case that details each individual step that must be made. This includes
actions that the user doesn’t specifically have to take in order to demonstrate the automation of
the product

4. Project Timeline, Estimated Resources,
and Challenges

4.1 Project Timeline

Task

Main
Contrib
utor

Due
Date

Octob
er

Nove
mber

Decem
ber

Januar
y

Febru
ary March April May

Develop Android
Application Karla

4/10/2
020

Create inventory
tables in database Nate

10/25/
2019

Create user tables in
database Nate

10/25/
2019

Create store tables in
database Nate

10/25/
2019

Configure Raspberry
Pi Ethan

10/25/
2019

Create user service Nate
11/22/

2019

16

Develop Raspberry Pi
application Max

3/6/20
20

Create inventory
service Ethan

3/20/2
020

Create store service Jesrik
4/10/2

020

Connect Raspberry Pi
to inventory service Arnoldo

3/27/2
020

Figure 2: Project Timeline Gantt Chart

The above diagram demonstrates the time frames associated with the various tasks as well as
the person that will lead the effort for the given task. October is spent primarily setting items up
while we continue to iterate on designing our hardware and software. The only items in October
are setting up tables in the database, configuring the Raspberry Pi, and beginning work on the
Android application. Starting in November, more complicated services and applications begin to
be worked on, such as the software on the Raspberry Pi, the inventory service, and the store
service. We plan to connect the Raspberry Pi to the inventory service once both services have
been sufficiently developed independently to be able to support being hooked up. We expect to
have all tasks done by late April, so that we can focus on preparing presentation documents
prior to the end of the Spring semester.

4.2 Feasibility Assessment
We expect that our project will include all of the features outlined in our design section.

The routing algorithm is seen as a significant challenge to our project. It has to route users,
which could be viewed as a traveling salesperson problem, but then it also needs to
conditionally go to certain stores. We can simplify the problem by narrowing the range of
possibilities so that the algorithm doesn’t need to consider every store. In order to choose which
stores, it has to weigh the additional travel times of going to a store against the possible savings
by going to that store. In order to view the possible savings of a store, there can be some subset
of items that are cheaper at a given store, compared to another store. There are a lot of factors
in play. Once a “perfect” algorithm (that always gives the correct, exact answer) is developed, it
should be fairly straightforward to develop an approximate certain parts of the algorithm in order
to lower the complexity of the problem from NP-hard to P. An additional option would be to
make some sort of naive local hill climbing AI agent that could be expanded to have a higher
chance of giving the user a “good” selection.

17

4.3 Personnel Effort Requirements

Task Description Time (person-hours)

Develop android application This includes allowing users
to create users, sign in,
manually update items
needed, and fetch the ideal
route and items to buy along
the route.

100

Create inventory service Create a service that has
APIs to update and fetch
items needed for a given
user.

50

Create inventory tables in
database

Make the inventory tables in
the database.

1

Create user service Create a service that has
APIs to update and fetch user
information.

50

Create user tables in
database

Make the user tables in the
database.

1

Create store service Create a service that can
fetch pricing information for a
variety of stores.

150

Create store tables in
database

Create the tables needed to
store the information about
physical retail stores.

2

Connect raspberry pi to
inventory service

Connect the raspberry pi to
the internet and get it to send
usage statistics to the
inventory service

20

Configure raspberry pi Make the actual physical
device that goes in the fridge
and reads data from a weight
sensor.

50

Develop raspberry pi
application

Write the software that the
raspberry pi runs to
communicate with the weight
sensor and android

70

18

application

Table 1: Personnel Effort Requirements

4.4 Other Resource Requirements

In order to complete this project, we will need a Raspberry Pi. On top of a Raspberry Pi, we will
need a weight sensor. We will be using the free service tier for Microsoft Azure. We don’t expect
to need to upgrade to a paid tier, but this issue may need to be revisited in the spring when we
are testing the recommendation service with large amounts of data.

4.5 Financial Requirements
We need to purchase some raspberry pis for developing and testing prototypes. 2 Raspberry Pi
4 boards and 2 Raspberry Pi Zero W boards should be sufficient for our purposes. Additional
circuitry parts or plastic housings may be required for the microcontrollers and weight sensors.
We need to buy the weight sensor, which is typically available for around $10. The overall
estimated hardware cost of this project is $200.

5. Testing and Implementation
Testing and test results are a critical indicator of the success of this project.

Testing of this project will be conducted as follows:

1. Types of Tests
a. User acceptance testing will be conducted to validate that requirements are met.

Functional requirements will be tested.
b. System testing will be conducted to ensure that all of the components integrate

with each other properly. Non-functional requirements such as performance,
reliability and scalability will be tested.

2. Items to be Tested
a. Raspberry pi & weight sensor device
b. Android application
c. Remote server

i. Inventory service
ii. Store service
iii. Recommendation service

3. Test Cases
a. Specific test cases will be created during the second semester of the project.

General test cases are described in sections 5.3 and 5.4.

19

4. Test Documentation
a. The testing process and procedures will be standardized. Once finalized, the

testing process will be documented.
b. Results of tests will be documented (problems or areas of improvement will be

noted so that the next revision can address them).

5.1 Interface Specifications
Sensor to Raspberry Pi
The weight or pressure sensor and the raspberry pi will be connected via the microcontroller’s
GPIO.

Raspberry Pi to Remote Server
Communicate via an encrypted TCP/IP port and exchanging raw bytes. The format of the bytes
sent over the port could be specified by us, or by utilizing a transfer language such as Protocol
Buffers for compressing and packaging the data in distinct, unambiguous ways that can be
processed by many languages.

Remote Server to Android App
Using a similar method as those specified between the Raspberry Pi and the Remote Server.

5.2 Hardware and software
We will use the following hardware to test and develop the project:

● Android phone to test the Android application.
● Raspberry pi to connect to the weight or pressure sensor and relay data to our remote

server

The following software will be used:

● Android Studio provides an emulator for any team members without an Android phone
● Postman provides a way for us to test the REST API calls on our server
● MySQL Workbench will be used to test storage is taking place on our databases

The end product of this project will result in one instance of the remote server (running multiple
services) and many instances of sensor devices (many users having many sensors). This also
includes many mobile devices interacting with the system.

5.3 Functional Testing

20

Functional testing will be conducted by user acceptance testing for each use case, as described
below:

● Automatically tracking supply or inventory of a household item, such as milk, and
updating the shopping list to reflect a low supply

○ Testing method: set up the scale with the raspberry pi. Calibrate the full and
empty weight settings, and then simulate the quantity of the item being depleted
(by using lower weight than the previous weight). The inventory data in the
remote inventory server should reflect the change when the user views their
current inventory in the app. When the simulated weight falls below the set
threshold, the item should be automatically added to the shopping list.

● Maintaining the shopping list
○ Testing method: test that the user can add, remove, or update the quantity of

items on their shopping list. This list should be stored on the inventory server and
viewable in the android application.

● Viewing optimal recommended shopping patterns based on contextual information and
given priorities (the user can prioritize going to the closest stores, spending the lowest
amount of money overall, getting the items as fast as possible, and other options)

○ Testing method: test that a user can request shopping recommendations via the
android application. The user should be able to view recommended shopping
routes in the user interface, and when they complete a route, the inventory
should automatically be updated to reflect the newly bought items.

● Viewing optimal recommended shopping patterns for multiple users (multiple people who
can shop)

○ Testing method: test that multiple users can be given recommendations in the
android application that optimize the shopping routes for multiple shoppers, and
not just a single person.

5.4 Non-Functional Testing
System testing, via unit tests, stress tests, and monitoring, will be conducted as described for
each area below:

Performance Testing

● Monitor the network use while the In-Home system is active
● Monitor the network, battery, RAM, CPU, and storage usage on the smartphone when

the app is running and when the app is in the background

Security Testing

● Use a packet sniffer to try to gain access to user information

21

● Use SQL injection and buffer overflow attacks to try and break both client and server
code

Usability Testing

● User testing on outsiders who are unfamiliar with our project can indicate whether the
project and the user interfaces are usable enough or if they need additional explanation.

Scalability Testing

● We are initially focusing on smaller data sets to simplify the scope of the
recommendation problem (otherwise we are dealing with an NP-complete algorithm
problem). Later on, we can introduce more data and possibilities for recommendations
and test the algorithms that we’ve designed. We can also simulate a large number of
sensors or users to see how our system scales.

5.5 Process

 When we begin testing prototypes, we will iteratively test the prototype and make
improvements until we reach a finalized design. This allows us to build confidently on our design
and utilize our past successful work. A diagram of our design and testing process is attached
below.

Figure 3: Project Testing & Iterative Development Process Diagram

5.6 Results

22

We are currently in the research phase of the project, so we have not conducted testing.
However, soon we will begin prototyping and testing iteratively. The results with each iteration
will be documented.

6. Closing Material

6.1 Conclusion

Up to this point we have done extensive research regarding tools and technologies that we can
use to help us both develop a solution to our problem statement as well as aid us in
communication and technical discussion.

We have begun drafting the architecture of our whole system including communication methods
between the different components as well as the data collection paradigm that the sensor
network will use in the user’s home.

We have laid out some deadlines for different aspects of the subsystems of our project to help
drive our development and force us to meet deadlines.

From here, we plan to begin some rudimentary prototyping to approach our goal of a proof of
concept by the end of the semester. Our hope is that in prototyping we can come up with
shortcomings of our approaches before placing too much of our effort in solving a problem
which is intractable.

6.2 References
 [1] A. Hauge, D. Bis, S. Guenette, H. Moser, N. Bix and B. Gruman. Automating Inventory
Management: Routing through Sensor Networks. Iowa State University: 2019.
http://sdmay19-29.sd.ece.iastate.edu/

23

