

Multi-Context Shopping Optimization
Design Document

Team Number: sdMay20-23

Clients/Advisors: Goce Trajcevski

Team Members:

Max Garton
Ethan Shoemaker

Jesrik Gomez
Karla Montoya

Nate Wernimont
Arnoldo Montoya-Gamez

Team Email: sdmay20-23@iastate.edu

Website: http://sdmay20-23.sd.ece.iastate.edu/

Revised: December 8, 2019 / v3

1

Executive Summary
For a majority of shoppers, a considerable amount of time and effort is spent on activities

related to shopping. We have identified three activities that can be optimized: maintaining
shopping lists, deciding which stores to shop at, and deciding the order or route to take while
shopping. Using microservices that combine inventory data from users’ homes provided by
sensors with nearby stores and maps services, we aim to create a system that saves shoppers
time, money and effort.

Development Standards & Practices Used
The following development standards and practices apply to this project:
Electronic Circuits:

● Safety
● Reliability
● Durability
● Efficiency

Software Practices:
● Agile development
● Lean development - fail-fast

Engineering Standards:
● Modularity
● Reliability
● Scalability
● Performance

Summary of Requirements

Functional Requirements
● A device that measures and reports inventory status of household goods - such as milk -

to a remote server
● The remote server tracks the status of inventory for each user
● A remote server computes the optimal destinations and routes for shopping given a

variety of constraints - price, time, location, convenience, delivery speed
● An Android application allows users to retrieve optimal shopping routes from the remote

server
○ The Android application allows users to add or remove - and adjust quantity - of

additional items to their personal shopping list
Environmental Requirements

● A device measuring and reporting inventory status would require wifi in the user’s home -
and potentially in their fridge or other storage place

2

● The device requires a power source
● The device must be able to operate in a refrigerator - down to 0 degrees Celsius

Economic Requirements
● Microcontrollers, sensors, power sources and housings for the inventory

measuring/reporting device
● Two central servers, one for data collection and one for recommendations, will be

needed
● Smart phones - Android devices - will be needed to use the mobile app.

Applicable Courses from Iowa State University Curriculum
● COM S 227: Object-Oriented Design
● COM S 228 & COM S 311: Data Structures and Algorithm Efficiency
● COM S 309: Software Development Practices
● S E 339: Software Architecture
● S E 319: User Interfaces
● CPR E 288: Sensor Applications and Embedded Systems
● CPR E 388: Android Application Development
● ENGL 314: Reporting, Documenting, and Technical Communication
● STAT 330: Introduction to Statistics
● CPR E 308: Operating System basics, Inter-Process Communication, and File

Management
● COM S 363: Database Management
● S E 329: Software Project Management
● CPR E 430: Network Protocols and Security
● CPR E 489: Data Communication and Client-Server Paradigms

New Skills & Knowledge Acquired From the Project
We expect to learn and research the following knowledge areas in order to be successful in this
project:

● System architecture design
● Cloud computing
● Full-stack development
● Hardware design - enclosing a circuit or microcontroller into a complete package
● Requirements development

Table of Contents
Executive Summary 2

Development Standards & Practices Used 2
Summary of Requirements 2

3

Applicable Courses from Iowa State University Curriculum 3
New Skills/Knowledge acquired that was not taught in courses 3
Table of Contents 4
List of Figures 7
List of Tables 8

1 Introduction 8
1.1 Acknowledgement 8
1.2 Problem Statement 8
1.3 Operational Environment 8
1.4 Requirements 9
1.5 Intended Users and Uses 9
Assumptions 10

The users' home has wifi 10
The user owns a GPS and Data enabled Android device 10

Limitations 10
The product shall not be too expensive 10
The product should have minimal impact on WiFi throughput 10
The product should not overuse the smartphone’s hardware - battery, RAM, CPU,
storage, WiFi 10
The only user interfaces of the project will be within the Android application. 11

1.7 Expected End Product and Deliverables 11

2. Specifications and Analysis 11
2.1 Proposed Design 11
2.2 Design Analysis 12
2.3 Development Process 13
2.4 Design Plan 13

3. Statement of Work 14
3.1 Previous Work And Literature 14
3.2 Technology Considerations 14
3.3 Task Decomposition 16
3.4 Possible Risks And Risk Management 16
3.5 Project Proposed Milestones and Evaluation Criteria 17
3.6 Project Tracking Procedures 17
3.7 Expected Results and Validation 17
Expected Results 17
Validation 17

4. Project Timeline, Estimated Resources, and Challenges 18

4

4.1 Project Timeline 18
4.2 Feasibility Assessment 19
4.3 Personnel Effort Requirements 20
4.4 Other Resource Requirements 21
4.5 Financial Requirements 21

5. Testing and Implementation 21
5.1 Interface Specifications 22

Sensor to Raspberry Pi 22
Raspberry Pi to Remote Server 22
Remote Server to Android App 22

5.2 Hardware and software 22
5.3 Functional Testing 23
5.4 Non-Functional Testing 23
5.5 Process 24
5.6 Results 24

6. Closing Material 25
6.1 Conclusion 25
6.2 References 25

5

List of Figures

Figure 1: Use Case Diagram (p. 9)
Figure 2: System Component Diagram (p. 15)
Figure 3: Sensor Data Collection Architecture (p. 15)
Figure 4: Android Application Mockups (p. 17)
Figure 5: Notification Service Sequence Diagram (p. 18)
Figure 6: Database Schema Diagram (p. 19)
Figure 7: Backend Services (p. 21)
Figure 8: Project Timeline Gantt Chart (p. 31)
Figure 9: Project Testing & Iterative Development Process Diagram (p. 40)

List of Tables
Table 1: Personnel Effort Requirements (p. 31)
Table 2: Functional Testing Plan & Acceptance Criteria (p. 36)

6

1 Introduction
Below we will acknowledge external contributions and introduce the main idea of the project.

1.1 Acknowledgement

The team thanks the Iowa State University department of Electrical and Computer Engineering
for giving us a resources, guidance and expert consultation. We appreciate the Electronic
Technology Group for providing us with our team website server and hardware components for
the project. Thank you to Goce Trajcevksi for meeting with us weekly to give us guidance and
advice.

1.2 Problem Statement

Consumers are presented with many different ways to shop - going to a favorite store, going to
the closest store, or going to the store where an item’s price is lowest, taking the most efficient
route to reach several stores. How can a consumer know that the choice they have made is the
best choice? How can we provide an optimal shopping recommendation to a consumer using a
combination of contextual information such as the user’s current inventory, the user’s current
location, the user’s shopping list, stores in proximity to the user, hours of the stores, and the
stores’ availability and prices for items?

Our solution is to develop a system that utilizes microcontrollers to automatically monitor the
quantity of items that a user has in their household. The microcontrollers would communicate
the data to a remote server that tracks the user’s inventory of several items. This inventory data
would be accessible and modifiable via a smartphone application. The user would also be able
to utilize this application to maintain a shopping list - which is also automatically curated based
on detected low inventory values in their household. The app could then provide the user with
recommendations based on the user’s current location, inventory data, the supply of items at
nearby stores, and other contextual information to suggest an optimal way for the user to shop.
Figure 1 in section 1.5 illustrates these identified use cases.

1.3 Operational Environment
The microcontroller device that measures the user’s inventory is expected to be stored within
range of a WiFi connection - with internet service. If the device is stored inside a refrigerator,
this may block or severely limit the connection. The device will also need a power source - either
via a powered USB port or a power outlet - to function.

We will rely on the user to have an Android device that is WiFi enabled. For initial setup, the
Android device must be in range for a WiFi connection to the sensor module, and there must be

7

a WiFi network for the setup process. After completing setup, we assume that the user’s
Android device has a reliable internet connection through either WiFi or mobile data.

We plan to deploy our remote server code to cloud resources from Microsoft Azure. We will
simply create a virtual machine (VM) and run our various services from it. We intend to use a
Linux VM from Azure due to the friendlier development environment of Linux. Additionally, a
number of members on our team are more accustomed to developing in UNIX environments.
For the databases, we will be using Azure’s SQL Database implementation.

1.4 Requirements
Functional Requirements

● A microcontroller measures and reports inventory status of household goods - such as
milk - to a remote server

● The remote server tracks the status of inventory for each user
● A remote server computes the optimal destinations and routes for shopping given a

variety of constraints - price, time, location, convenience, delivery speed
● An Android application allows users to retrieve optimal shopping routes from the remote

server
○ The Android application allows users to add or remove - and adjust quantity - of

additional items to their personal shopping list
Environmental Requirements

● A device measuring and reporting inventory status would require wifi in the user’s home -
and potentially in their fridge or other storage place

● The device requires a power source
● The device must be able to operate in a refrigerator - down to 0 degrees Celsius

Economic Requirements
● Microcontrollers, sensors, power sources and housings for the inventory

measuring/reporting device
● Smart phones - Android devices - will be needed to use the mobile app.

1.5 Intended Users and Uses

Intended User
This solution is intended to be used by any consumer that shops regularly. This could include:

● Families in an urban and suburban setting within 20 miles of a store
● Members of apartments who share kitchen and other household supplies

Intended Uses
The diagram below illustrates the core use cases for our project. These are included in the
minimum viable product. If time allows, we will add additional features such as extending the

8

shopping recommendations to families with multiple shoppers. We plan to update this document
to reflect any such changes.

Figure 1: Use Case Diagram

The use cases are further described below from the perspective of our user persona, Mr. Smith:

1. Mr. Smith sets up a sensor module to add it to his account
a. Mr. Smith opens the Android application and opens the “add a sensor” menu
b. The Android application automatically locates the new sensor module and

prompts Mr. Smith to enter the Wifi SSID and passkey to join
c. After joining the network, Mr. Smith is prompted to configure a high, low and

empty weight setting on the sensor module from the application
2. Mr. Smith views the status of his inventory

a. He opens the Android application and logs into his account
b. He can see his current inventory amounts, such as:

9

i. Milk - full
ii. Eggs - 50% remaining
iii. Detergent - 10% remaining

3. Mr. Smith views and modifies his shopping list
a. He opens the Android application and views his current shopping list
b. He adds another item to the shopping list
c. He updates the quantity needed of an item on the shopping list
d. He removes an item from the shopping list

4. The inventory sensing module tracks Mr. Smith’s inventory of items
a. A sensor module reading is sent to the remote inventory server
b. The inventory server identifies this as a low amount
c. The server updates the stored inventory value for that item
d. The server adds the item to Mr. Smith’s shopping list if the low value is below Mr.

Smith’s set threshold
5. Mr. Smith gets shopping recommendations

a. He opens the Android application and opens the “start shopping” menu
b. He establishes his shopping criteria within the app:

i. Store location - maximum distance away
ii. Prioritization of price and time - via a slider

c. He submits the request for shopping recommendations

1.6 Assumptions and Limitations

In order to narrow the scope of the problem statement, we introduce the following assumptions
and limitations:

Assumptions
The design decisions described in this document are built upon the following assumptions:

The user’s home has wifi
For the project, we are assuming the refrigerator scale has a suitable WiFi connection. Without it
being connected to WiFi, the inventory sensor’s data cannot be used to make shopping
recommendations. All of the use cases in section 1.5 build from this assumption.

The user owns a GPS and Data enabled Android device
Because our whole project wraps around the idea of sending notifications to users, we will not
be able to do this unless our user owns an Android device with the required technology. All of
our use cases rely on this assumption because an Android device would be required to set up a
sensor device - use case 1.

10

Availability of external data:

Our proposed solution to the problem statement relies on the availability of third party data -
more specifically, the inventory data of stores. This can be mitigated by doing initial research on
the APIs available for public use and looking into those of popular grocery stores. If we are
unable to find public APIs that give us the data we need, we may need to mock it in order to
further our proof of concept. Use case 5, receiving shopping recommendations, depends heavily
on this assumption; a store is not easily recommended without insight into the products that are
available at the store.

Limitations
We have established the following limitations for the project:

The product shall not be too expensive.
The sensor devices - in use case 1 - should have a reasonable cost of less than $25 per sensor
for the finalized product. The servers used for the project - for all use cases - should be of
minimal cost.

The product should have minimal impact on WiFi throughput.
The sensor devices should only send data over WiFi and the internet when necessary - ie. when
the inventory has changed or during initial setup, in use cases 1 through 4.

The product should not overuse the user’s Android device’s hardware -
battery, RAM, CPU, storage, WiFi.
Any algorithmic computation - such as recommending shopping routes in use case 5 - should
be done on a server and not on the user’s device. This is to ensure that the user interface on
the Android application is responsive for the user.

The only user interfaces of the project will be within the Android application.

Because Android is the most common mobile operating system, we will develop our mobile
application on Android first. If time allows, a web application or iPhone application with the user
interface may be developed. The Android application will be involved in use cases 1, 2, 3, and 5
in section 1.5.

1.7 Expected End Product and Deliverables
The final product delivery will be split into a proof-of-concept, minimum viable product, and a
final product deliverable. The proof-of-concept and minimum viable product (MVP) will be

11

delivered by the end of the fall 2019 semester. The finalized product will be delivered at the
end of the spring 2020 semester. An overall design manual of the product and its architecture
will also be provided for any future development.

1. Finalized System Design - December 1, 2019
a. The proof of concept prototype will have the majority of our design decisions

finalized. It will also demonstrate the feasibility of such a system to measure and
track the supply of household items, communicate the data to a server, show
the data to a user on a mobile device, and recommend an optimal way to shop
based on the given data and user inputs. At this point in the project, the system
architecture as well as the tools and technologies used to construct it have been
researched and selected.

2. Minimum Viable Product - March 15, 2020
a. The minimum viable product is the overall system connected, where each

component listed in the proof of concept is completed and integrated so that the
system functions. Functionality may be limited at this point - the
recommendation may not be based on all information or the user’s input.

3. Finalized Product - April 15, 2020
a. The finalized product would have complete functionality, supporting all use

cases described. The recommendation feature is extended to take into account
other user’s - family members - locations and shopping lists, optimizing the
shopping experience for a whole household instead of one user.

2. Specifications and Analysis
Below we will discuss how we will solve the problem that we have described above.

2.1 Proposed Design
● Our current approach includes using simple analog sensors that can be interfaced to a

widely available microcontroller in order to monitor the current contents in a user’s home
○ The current plan is to use a Raspberry Pi as our microcontroller, and weight

sensors to weigh products in the user’s home.
○ Since we are using an analog pressure sensor, this will require the user to

calibrate an “empty” and “full” weight for the item being measured by the system.
● The microcontroller will connect to wifi, and will interface directly with our server, sending

it the weight of tracked items a user has in their home.
○ The Raspberry Pi will communicate with the remote server via HTTPS requests

to guarantee confidentiality, integrity, and authenticity
● After our server receives product weight data, if the quantity is below a certain threshold

we will notify our users they are running low.

12

● There will be an Android application that allows the user to manually input products that
they need to shop for

○ The application displays the current shopping list, which may or may not include
items that were automatically added based on the sensor data

○ The user can add or remove items to the list, or update quantities needed.
● Our database will be a simple SQL server instance and our data will be stored in simple

key-value pair format.
● The Android application will allow users to view optimal routes for what to purchase.

○ The optimal routes are computed by remote server and displayed on the
application’s user interface.

○ The user can choose the extent to which time and money savings should be
prioritized when browsing the nearby stores.

○ These optimal routes should be “perfect”, meaning that they give the ideal
answer, and they should have adjustments for the tradeoff between time and
money

■ For example, it might be more expensive to buy groceries from the same
store, but it saves a lot of time.

2.2 Design Analysis
Our proposed solution with the plan for each component explained in section 2.4, will address
our problem statement. At this point in the project, everything is based on research, hence the
details of each component or interfaces within the system are subject to change as we
prototype and improve on the current design. The current design’s strengths are its simplicity
and low cost - minimal hardware costs and virtually no software costs. However, the design’s
two biggest weaknesses are that it may not be user friendly - especially the setup process when
a user needs to register a new sensor module - and that it might have limited functionality for
recommendations - which will be built more in the second semester of the project. We plan to
iterate on these issues and further address them during the implementation phase of our
project. This means that the finalized designs may be completely different than the prototype
designs that we have documented as of yet. For example, we may use a smaller, lower power
microcontroller - the current design uses a full-sized raspberry pi - in a later design.

Our proposed solution will take advantage of existing security protocols, concepts, and
paradigms to ensure the security of our system. This includes encrypted communication;
encrypting customer sensitive information, both in transit and at rest; preventing people from
using a man in the middle attack with our devices; preventing tampering with devices that collect
data from within user’s homes; and securing our databases. Part of our focus during the second
semester will be on securing the communication between components in the system. The scope
of our project does not include the invention of any new security protocols or concepts

13

2.3 Development Process
In the fall semester, we have been using an Agile development process. We have continually
made small adjustments to our schedule and weekly plans in order to reflect the decisions we
are making and the research we are conducting. We also plan to follow an Agile approach in the
spring semester, although it may be more rigid - we will already have a fairly solid idea of the
specifications and details of the implementation by then. However, we anticipate that there will
still be changes and adjustments to the scope and schedule, like any large software
development project.

14

2.4 Design Plan
The team has designed the system illustrated by Figure 2 below which consists of 3 major
components: the inventory sensor, the remote server and the Android application.

Figure 2: System Component Diagram

Following will be an elaboration on the design and operation of the different components of the
system as well as the main use cases for each of them.

Figure 3: Sensor Data Collection Architecture

15

The use cases involving the inventory sensor are described below:

● Inventory data collection
○ The weight sensor’s value is an analog value - just a voltage that varies with

weight, so it must be converted to a signal that can be interpreted by a
microcontroller

○ The weight sensor is connected in series with the battery pack and the ADC to be
converted to a digital value that the microcontroller can process

○ The Raspberry Pi then sends these values to be stored in the remote database
● Setup of a sensor

○ The user will power on their sensor module
○ The user connects their Android phone to the WiFi network that the sensor will

operate on
○ The user uses WiFi to connect with their new sensor module’s private network

and this allows the user to connect their sensor module with the home WiFi
○ The user then assigns an item name that this sensor will be used to track

● Data transmission method
○ Every 60 minutes - regardless of any change detected, the sensor module will

send a sensor value update to the server
○ If the sensor module detects a change, it will send an instantaneous update to

the server

16

Figure 4: Android Application mockups

● Login Activity (not pictured)
○ The user will first need to login before using the application by entering a

username and password
○ If the user has logged in in the past, the device will store a Cookie, which it will

use to automatically login every time.
○ optional - The user can manually log out to prevent automatic login on opening

the app.
● Home Inventory Activity

○ The user can view their inventory of items, indicated by measurements from
inventory sensors tied to their account

● Shopping List Activity
○ Fetches and displays the user’s shopping list from the remote server.
○ The shopping list can be edited:

■ Adding items
■ Removing items
■ Updating the quantity of items

○ Once the user exits this activity, the remote server will be updated with the latest
list.

○ If the user wants to start shopping, they will select the “start shopping” button
from here.

● Setup Activity
○ The user can view all of the sensors tied to their account, along with their status

(online or offline).
○ They can modify a sensor, either calibrating it or changing the item it measures.
○ They can add a new sensor to their account, which includes linking it to their

account, tying it to an item, and calibrating it (as shown in Figure 1).

17

Figure 5: Notification Service Sequence Diagram

As part of the use case for viewing the user’s inventory, we have designed a notification that the
user will receive when an inventory sensor detects that they are running low on a given item.
The “Running Low” Android notification is described below; it is an extension of use case 4d
described in section 1.5.

● The Android App will notify the user if the measured inventory amount of an item falls
below a set threshold.

● If the user is notified, the user can simply click on the notification, which will then open
the app.

● The process handling the notification will be a background process, or service, which will
periodically - about every 30 minutes - check the quantity of all items. Then, if an item
that was not already low runs low, the user will be notified.

● This process of doing a fast, simple check periodically is lightweight, so it will not utilize
more device resources than necessary. It should result in minimal battery use.

18

Figure 6: Database Schema Diagram

Each database table in Figure 6 is described below:

● Store_distances
○ Database: `routing`
○ Purpose: Serve as a cache for distances between stores. Stores do not move, so

there is no reason to go to the third party API every time the routing algorithm
needs this information.

● Stores
○ Database: `mock_stores`
○ Purpose: Mock store information, so we can verify functionality of other

components before integrating with third party APIs.
● Items

○ Database: `items`
○ Purpose: Store items with their name. This will allow relations between sensors

and what item they are tracking, as well as users and the items they need. It
standardizes items across users.

● Store_owns
○ Database: `mock_stores`
○ Purpose: Relate stores to what items they sell and for what price

● Users_need
○ Database: `shopping`
○ Purpose: Relate users to what items they need and in what quantity

19

● Users
○ Database: `users`
○ Purpose: Store user information and metadata. This will also enable

authentication because it stores user passwords.
● Sensors

○ Database: `sensors`
○ Purpose: Stores configuration information for a given sensor UUID, such as what

is considered a “max” or full weight for an item, what is considered a “low” or
empty weight for the item, and what is considered a “threshold” weight, which is
the weight that we add the item to the user’s shopping list. Additionally, this table
tracks who owns the sensor.

● Sensor_data
○ Database: `sensors`
○ Purpose: Stores the sensor data reports and timestamps them.

If possible, we will obtain inventory data from APIs provided by grocery stores. We have found
that both Walmart and Target have APIs that provide the necessary data, but they do not allow
public use. We plan to mock stores’ inventory data in the likely scenario that we are unable to
utilize existing APIs.

We plan to route users to store locations using directions provided by the Bing Maps API. We
also considered using the Google Directions API, but the service requires a paid subscription.
Bing Maps allows our service to make 50,000 transactions per day in the free tier, so long as we
are considered an Education use case. Due to this free tier, we will rely on the Bing Maps API.
Additionally, Bing Maps is capable of routing from an initial start location to a final destination
through multiple waypoints while factoring in traffic conditions. These exact capabilities align
with the needs of the project, so Bing Maps will be sufficient for our project.

20

Figure 7: Backend Services

3. Statement of Work
Below we will discuss our process, goals, and tasks for the undertaking of our project.

3.1 Previous Work And Literature
A previous senior design team at Iowa State University worked on creating a “smart bin” device
that measures the quantity of an item based on the measured weight, combined with software
that helps businesses restock products more efficiently [1]. While this project aims to solve a
similar problem, the user that we are targeting is a general consumer or shopper, rather than a
business. The project had a lower cost than our anticipated cost - their project required $80
minimum purchase of microcontrollers and sensor modules, while our anticipated cost is under
$250. In addition, the Multi-Context Shopping Optimization project includes the possibility of
extending the optimization to multiple shoppers, which differentiates it from past projects. A

21

document detailing Sequence-Aware Recommender Systems states that it will discuss some
relevant topics to any Recommender Systems; however, these are typically geared towards
more general scenarios where the scope of the project or system is a bit larger than what our
system is designed to do. Such things include user-item pairing matrices to predict other
user-item ratings and session-based recommendations. These do not apply to our project since
we are not strictly speaking developing recommendations for users based on their habits. We
are providing recommendations based on factual information for which an objectively optimal
selection can be chosen - ie the store that is closest and has the cheapest price [2].

3.2 Technology Considerations

Strengths and weaknesses different technologies that may be used for the project are listed
below. Bolded technologies indicate that the team chose to utilize them.

● Microcontroller
We considered the following options:

○ Raspberry Pi 4 and Raspberry Pi Zero W
■ Strengths: The team has experience with projects using it. It is well

documented and supported. It allows flexibility in programming
languages. The board has all of the

■ Weaknesses: It is expensive compared to other microcontroller options. It
has high power consumption and features that would not be used by this
solution.

○ Other Linux-based microcontrollers
■ Strengths: Most raspberry pi alternatives are cheaper than the raspberry

pi. They also allow flexibility in programming languages.
■ Weaknesses: These boards are not documented or supported as much

as the raspberry pi or arduino.
○ Arduino Nano IOT

■ Strengths: The team has experience with projects using it. It is well
supported and documented. It costs less than most other microcontrollers

■ Weaknesses: It requires us to write programs in C. The board may be tied
to Arduino’s IOT platform - it may not allow us to easily connect to our
own services.

We chose to use the Raspberry Pi 4 and Raspberry Pi Zero W due to their flexibility in
development. We plan to build sensor module prototypes using the larger Raspberry Pi
4, and then we will build later prototypes - closer to the finalized design - using the
smaller, more power efficient Raspberry Pi Zero W.

● User Inventory Sensing
The following were considered as options for sensing the quantity of the user’s items

22

○ Weight Sensor
■ Strengths: Applies to most items a user would want to track since the

item’s weight is most often proportional to the amount remaining
■ Weaknesses: Objects with a low product weight to container weight ratio

may not be able to be sensed accurately or correctly
○ Infrared or SONAR distance sensor

■ Strengths: Can be used on objects with a large or irregular base platform
since it does not need to be underneath the object

■ Weaknesses: Distance sensors often require calibration specific to each
instance. This would most likely require the user to compromise the
container of the object in order for it to sense the “level” of the product.
Only applies to products that are fluid-like and have a “level” such as milk,
juice, or even sugar and salt.

○ Digital Image Processing
■ Strengths: One camera or sensor can be used to track multiple items
■ Weaknesses: Algorithms are incredibly difficult to fine tune. The camera

needs to be placed somewhere distant enough from the product to
observe the level. Only applies to products that are fluid-like and have a
“level” such as milk, juice, or even sugar and salt.

We elected to use the weight sensor as it can be used for a wide variety of products and
in an effective, predictable manner with minimal calibration or software sophistication
required. It is also the cheapest of the 3 options considered. This sensor is a proof of
concept and is subject to revision as we implement the project.

● Web Server
○ NodeJS

■ Strengths: Ideal for efficient data-intensive real-time applications that run
across distributed devices. The runtime environment is lightweight and
efficient, which will allow us to satisfy our scalability requirements. The
team has experience developing web services with NodeJS. It supports
open source libraries.

■ Weaknesses: NodeJS is not ideal for CPU-intensive operations due to its
single-thread non-blocking I/O design. Heavy package dependencies.

○ Flask - Python
■ Strengths: Can handle heavy server-side CPU-intensive operations.

Mature and stable open source libraries.
■ Weaknesses: None of the team members have developed web services

with Flask, and are not as experienced with Python.

We decided to build the application’s REST API with NodeJS because the vast majority
of the operations will be small and fast; in other words, we expect a large volume of
simple constant time operations, as opposed to less frequent complex operations. It is

23

also highly scalable, and our team has experience developing web services with this
runtime environment.

● Mobile Application

We considered two mobile platforms to develop a mobile application for:
○ Android

■ Strengths: The team has experience developing Android applications.
Android is well-documented as a development platform and supports
many open source libraries. As far as Android libraries being used, we are
currently only planning on using internal Android Libraries.

■ Weaknesses: Supporting so many devices can be difficult, due to them
having different hardware. Many Android devices are running older
versions, which may require us to use old development libraries to ensure
that a majority of users would have access to our application.

○ iOS
■ Strengths: It would allow more users to utilize this project’s product.
■ Weaknesses: No one on the team has experience developing iOS

applications.

For our application, we have decided to use Android. The reasons are listed below.
● Development tools: Android Studio is available for all major OSs - Linux, Mac,

and Windows. Unlike Android studio, Xcode can only be executed by the Mac
operating system, which would be needed in order to develop in IOS.

● Test Devices: Most people in our team own Android devices, which makes it
easier for us to test our application.

● Experience: Everyone in the team has at least done some Android development,
while others have even had internships related to Android Dev. Also, Android is
written in Java, which everyone has experience with.

● Data Storage
○ mySQL

■ Strengths: Most of the team is familiar with relational databases and
querying. It is also incredibly well supported.

■ Weaknesses: Constrains us to using relational data models.
○ Data Warehouse

■ Strengths: Could efficiently analyze large amounts of data for trends and
performance

■ Weaknesses: Not geared towards the individual user; typically used to
create performance evaluations

○ GraphDatabase
■ Strengths: Useful in finding relationships in your data or getting patterns

that are geared towards your customer
■ Weaknesses: Not useful when your data is key-valued and tabular

24

For our application, we have decided to use mySQL. mySQL will satisfy our data storage
requirements with its relational model architecture because we anticipate a large volume
of small transactions. Furthermore, our team is familiar with mySQL database
management system and it is heavily used in the industry. The database engine is
incredibly mature, and there are many libraries available for interfacing with the
databases. Additionally, the other storage methods considered created too much
overhead for our data model. mySQL should allow straightforward and performant
development for our backend services.

● Cloud Computing & Modularization
○ Microsoft Azure

■ Strengths: The team has experience using Azure to deploy microservices
and web applications. Azure also has a free tier for services that will
satisfy our needs for this project. It has many options for app hosting
features. Azure is well documented with many tutorials for creating and
deploying various web applications and services.

■ Weaknesses: Azure is not as compatible with open-source software as
other cloud computing options.

○ Amazon Web Services - AWS
■ Strengths: AWS is more open source friendly than Microsoft Azure. AWS

has many services and is a well documented platform.
■ Weaknesses: The team is not as familiar with AWS. We have previously

encountered bugs in Aurora.
○ Docker

■ Strengths: The team has experience using Docker. There are also readily
available container images.

■ Weaknesses: Can be somewhat confusing for anyone who has not used
Docker.

We chose Azure because our team is more familiar with Azure. Additionally, we will be able to
stay within the free tier. We chose to seek out a cloud based approach because other aspects
of our project are already forced to be cloud-based (e.g. Bing Maps and store data); as such, we
are already paying the penalty for network latency elsewhere. Additionally, we deemed the
additional complexity of hosting our own solutions to be not worth the small performance benefit
of making things ourselves.

3.3 Task Decomposition

The project is broken down into the following tasks:

● Sensor Module
○ Test sensor for precision and sensitivity and determine if calibration is needed

25

■ Ethan
○ Develop software to allow Raspberry Pi to connect to the user’s WiFi

■ Ethan
■ Max

○ Develop program to read values from the sensor and send this data to the
remote server

■ Max
○ Optional: create a housing module to hold the microcontroller, power source,

sensor and any additional hardware
● Android application

○ Design app layout and navigation scheme
■ Karla

○ Create notification service
■ Arnoldo

○ Create network libraries specific to our application
■ Arnoldo

○ Create login activity
■ Karla

○ Create configuration activity
■ Karla

○ Create inventory activity
■ Karla

○ Create shopping list activity
■ Karla

○ Create shopping activity
■ Arnoldo

○ Fetch data from server, update each activity depending on server
■ Arnoldo

○ Update server with data from our app
■ Arnoldo

● Servers
○ Determine API that allows the Android app and sensor modules to acquire data

■ Jesrik
○ Develop functions for mySQL

■ Jesrik
■ Nate

○ Develop Users Service which will allow users to register, log in, and log out
■ Jesrik

○ Develop Shopping Service which will allow users to fetch, add, edit, and remove
items from both, the shopping and inventory list

■ Jesrik
■ Nate

○ Develop Sensor Service to register, report, and fetch data from sensors

26

■ Jesrik
■ Max
■ Ethan

○ Develop Stores Service to find nearby stores and item information
■ Jesrik
■ Nate

○ Develop Routing Service according to user and store location, and also shopping
priorities

■ Jesrik
■ Nate

● Databases
○ Construct relational model, tables, and fields for each table

■ Nate
○ Analyze necessary queries to establish needed indices

■ Jesrik
● Testing

○ Unit testing
○ Integration testing

■ Integrate database/servers
● User Database / User Service
● Shopping Database / Shopping service
● Sensor Database / Sensor service

■ Integrate third party APIs and servers
● Stores service / stores APIs (or mocked data)
● Routing Service / mapping API, shopping service, stores service

■ Integrate servers/Android application
● Users service / app
● Shopping service / app
● Routing Service / app

■ Integrate Raspberry Pi / Sensor Service
○ Functional testing

■ Functional tests for each core use case are described in Table 2 in
section 5.3.

High-level testing tasks were outlined in this section. For more information about the testing
plans for the project, refer to section 5.

3.4 Possible Risks And Risk Management

Possible risks and mitigation methods for this project are listed below:

● Security: sending user’s data over the internet - and over WiFi - can present a risk that
the user’s data could be exposed to others.

27

○ This is mitigated by encrypting the data before sending it over the internet. This
prevents the likelihood of someone sniffing the data and seeing sensitive user
information.

● Authenticity: if attackers know the data format of the recommended stores, they can
spoof the identity of the server and recommend non-existent or invalid stores to the user

○ This can be mitigated by encrypting the data and by using digital signatures to
verify the integrity of the message as well as the identity of the source

● Integrity: Attackers may be able to determine the format of our requests and send fake
requests to the server, potentially causing harm

○ This is mitigated by encrypting data so that 1) an attacker cannot easily
determine the destination of the requests, 2) an attacker cannot easily reverse
engineer the format of our requests, and 3) an attacker cannot send invalid
requests to our server

● Availability: We expect our uptime to always be above 99.99%, which is the service level
agreement for Microsoft Azure

○ This can be mitigated somewhat natively by backbone internet service provider
routers, but additionally by blacklisting IP addresses that appear to spam our
servers - and blocking unused ports.

● Scalability: We expect our system to be scalable for more than 100,000 concurrent
users. A user is considered anyone who has at least one of our sensor modules installed
or uses the app

○ This can be ensured by acquiring sufficient resources on the server and
optimizing our use of the resources. When applicable, our algorithms for
recommendation will be analyzed for optimum performance.

3.5 Project Proposed Milestones and Evaluation Criteria

Key milestones for the project will be based on the use cases or features listed below. Each
milestone is completed by the verification of the use-case functionality, specified in section 5.3.
After we have reached all of these milestones, we will focus on refining and improving
non-functional requirements, such as security, reliability, performance, and scalability.

1. Installing and Setting up an Inventory Sensor Device
2. Viewing the status of a User’s Inventory
3. Viewing and Modifying a User’s Shopping List
4. Automatically Tracking a User’s Inventory
5. Receiving Shopping Recommendations Upon the User’s Request

3.6 Project Tracking Procedures

Our team will follow an Agile development process, with 14-day sprints. Gitlab will be heavily
used to track the sprint progress via the issues board. Project milestones, such as the
completion of the remote server APIs, will be included in the Gitlab repository to ensure that the

28

progress aligns with the planned schedule. This serves as a common place to view the status of
work being done - and work that will be started soon. As tasks - Gitlab issues - are completed,
team members are expected to document the work within the issue page so that the work can
be revisited and understood in the future. Furthermore, we will also be adding more specific
issues for bugs, features, and functions that need to be implemented when necessary.

Slack, the instant messaging platform, will be used frequently for communication between team
members. This platform will provide the team with an efficient way to discuss concerns, ideas,
logistics and clarifications amongst all members of the team or specific individuals.

Status reports will be completed and posted at regular intervals (every 10 days during the fall
semester and every 14 days during the spring semester) on our team Senior Design website.
Notes will be taken during team and client meetings and then stored in our shared Google Drive
folder. This will ensure that decisions and discussions that take place during meetings are
documented for future reference.

3.7 Expected Results and Validation

Expected Results

The desired outcome is that a user is able to download the Android application created during
this project and install the inventory sensors in their home. The user will be informed of the
measured inventory in their home, items will be automatically added to their shopping list, and
they will be able to make better shopping decisions using shopping recommendations from the
application. Additionally, the desired outcome includes a full user guide that allows a layperson
to setup and use the system.

Validation

We plan to validate that each functional requirement and use case is met by conducting testing
for each use case. The test plans and acceptance criteria are defined in section 5.3.
4. Project Timeline, Estimated Resources,
and Challenges
We now provide a detailed timeline in the form of a gantt chart for the work pertaining to our
project. One chart outlines the fall semester timeline while the other shows the spring semester
timeline.

4.1 Project Timeline

29

The below diagram demonstrates the time frames associated with the various tasks as well as
the person that will lead the effort for the given task. October is spent primarily planning for how
and what data needs to be communicated. Starting in November, work begins on iterative
design tasks, such as testing the sensors, the software on the Raspberry Pi, the inventory
service, and the store service. We plan to connect the Raspberry Pi to the inventory service
once both services have been sufficiently developed independently to be able to support being
hooked up. Come second semester, the bulk of development will be underway including more
thoroughly implementing the remote services, data sensing and logging. Android user interfaces
will be realized by the minimum viable product deadline of March 15th. Each subsystem should
ideally be fully functioning independently by early March so that the integration can be more
completely tested. We expect to have all tasks done by late April, so that we can focus on
preparing presentation documents prior to the end of the spring semester.

30

Figure 8: Project Timeline Gantt Chart

31

4.2 Feasibility Assessment
We expect that the core use cases outlined in section 1.5 will be possible to implement. We
anticipate that some sources of data, such as inventory data from grocery stores, will not be
available to us within the timeline of the project. To overcome this limitation, we will mock the
store inventory data if necessary.

One challenge that may be encountered with the sensor subsystem is developing a program
which can communicate with our Android app directly via a WiFi network broadcast directly from
the Raspberry Pi such that it can connect to the user’s home WiFi network. Other smart home
devices use this method to connect to a user’s network, namely the Google Home series and
the Amazon Echo series.

The routing algorithm is seen as a significant challenge to our project. It has to route users,
which could be viewed as a traveling salesperson problem, but then it also needs to
conditionally go to certain stores. We can simplify the problem by narrowing the range of
possibilities so that the algorithm does not need to consider every store. In order to choose
which stores, it has to weigh the additional travel times of going to a store against the possible
savings by going to that store. In order to view the possible savings of a store, there can be
some subset of items that are cheaper at a given store, compared to another store. There are
many variables involved. Once a “perfect” algorithm - that always gives the correct, exact
answer - is developed, it will be possible to develop an approximate certain parts of the
algorithm in order to lower the complexity of the problem from NP-hard to P. An additional
option would be to make some sort of naive local hill climbing AI agent that could be expanded
to have a higher chance of giving the user a “good” selection.

4.3 Personnel Effort Requirements
Task Description Person-Hours

and main contributor

Testing the sensors Observe the behavior of the
sensors and determine if
calibration is required per sensor

15

Ethan Shoemaker

Develop software to allow
Raspberry Pi to connect to
user’s WiFi

Write a program which can
programmatically connect to a
user’s WiFi at runtime

35

Max Garton

Develop program to read
sensor values and send to
remote server

Write a program on the Raspberry
Pi which can interface with the
sensors and send the data to the
remote server for processing

40

Ethan Shoemaker (& Max
Garton if needed)

32

Create Notification Service Create a background service on
our android app that will
periodically check for changes in
the quantities of our inventory. If
we are below a certain threshold,
we will notify the user.
This part will require services,
bound services, and notifications.

30

Arnoldo Montoya-Gamez

Create Network libraries on
Android

Create utility libraries that will be
used to communicate with the
server. Whether that is to send
data, receive data, or update data.
All server communication should
be done within this Util library.

5

Arnoldo Montoya-Gamex

Create Login Activity Create initial activity that will be
used to login. This activity will
check if the user has logged in in
the past. If not, we will ask user to
login. We will possibly use “Login
with Google” feature, depending
on complexity.

25

Karla Montoya

Create Main Activity This will be the main activity,
consisting of three buttons, with
each representing a different
activity. The user can switch to the
Inventory, Shopping List, or “Start
Shopping” activities by clicking the
corresponding buttons.

10

Karla Montoya

Create Inventory Activity This activity will be the screen
showing the current quantity of the
tracked inventory. This activity will
also give users the option to add
new sensors.

20

Karla Montoya

Create Shopping List Activity This activity will show the user’s
current shopping list, and will have
the option to “check” items off.
This activity will depend heavily on
network connections, because it
may update, add, delete items
from our checklist, which should
be updated in the server as well.

20

Karla Montoya

Create Store and Price This activity will show stores where 30

33

Activity items on the user’s shopping list
can be purchased from, with the
ability to sort by price or distance.

Arnoldo Montoya-Gamez

Fetch Data from Server to
Android app

Ensure that every activity that
needs server data fetches it
correctly using the network util
library.

10

Arnoldo Montoya-Gamez

Update server with data from
our app

Ensure that every activity that
updates the server does it
correctly using the network util
libraries.

10

Arnoldo Montoya-Gamez

Determine API that allows
endpoints to communicate
with server

Determine a high-level API design
for the users, shopping, sensor,
stores, and routing services

15

Jesrik Gomez

Make Users Service Service to register new users and
handle logins with cookies

10

Jesrik Gomez

Make Shopping Service Main inventory management
service which will handle inventory
and shopping lists for users

40

Nate Wernimont

Make Sensor Service Service to handle communication
between sensors and server

15

Jesrik Gomez

Make Stores Service Main store inventory management
service to gather item information
from nearby stores

40

Nate Wernimont

Make Routing Service Service to create route based on
shopping priorities

40

Nate Wernimont

Construct relational model Create the schema and the
databases in MySQL

10

Nate Wernimont

Analyze queries for needed
indices

Look at the needed queries and
optimize them to use indices

20

Jesrik Gomez

Table 1: Personnel Effort Requirements

34

4.4 Other Resource Requirements

In order to complete this project, we will need two Raspberry Pi microcontrollers and two
Raspberry Pi zero “W” microcontrollers. A portable power source will be required to power the
sensor modules to allow them to be placed remotely around a home - in areas from which
electrical outlets are not reachable. Aside from the microcontrollers, we will need
weight-dependent resistors - with built in analog to digital converters. We will be using the free
service tier for Microsoft Azure to host our backend services. We do not expect to need to
upgrade to a paid tier, but this issue may need to be revisited in the spring when we are testing
the recommendation service with large amounts of data.

4.5 Financial Requirements

We need to purchase some raspberry pis for developing and testing prototypes. 2 Raspberry Pi
4 boards and 2 Raspberry Pi Zero W boards should be sufficient for our purposes. Additional
circuitry parts or plastic housings may be required for the microcontrollers and weight sensors.
We need to buy the weight sensor, which is typically available for around $10. The overall
estimated hardware cost of this project is $250.

5. Testing and Implementation
Testing and test results are a critical indicator of the success of this project.

Testing of this project will be conducted as follows:

1. Types of Tests
a. User acceptance testing based on functional requirements will be conducted to

validate that requirements are met. Test plans and acceptance criteria for each
use case are listed in section 5.3.

b. System testing will be conducted to ensure that all of the components integrate
with each other properly. Non-functional requirements such as performance,
reliability and scalability will be tested.

2. Items to be Tested
a. Raspberry pi & weight sensor device
b. Android application
c. Remote server

i. Inventory service
ii. Store service
iii. Recommendation service

3. Test Cases

35

a. Specific test cases will be created during the second semester of the project.
General test cases aligned with our core use cases are described in sections 5.3
and 5.4.

4. Test Documentation
a. The testing process and procedures will be standardized. Once finalized, the

testing process will be documented.
b. Results of tests will be documented - problems or areas of improvement will be

noted so that the next revision can address them.

5.1 Interface Specifications
Sensor to Raspberry Pi
The weight or pressure sensor and the raspberry pi will be connected via the microcontroller
GPIO.

Raspberry Pi to Remote Server
Communicate via an encrypted TCP/IP port and exchanging HTTPS requests. The format of the
data sent could be formatted using the widely accepted JSON or XML schemes.

Remote Server to Android App
The connection between the remote server and the Android app is similar to the connection
between the raspberry Pi and the remote server - using HTTPS for encrypted communication.

5.2 Hardware and Software
We will use the following hardware to test and develop the project:

● Android phone to test the Android application.
● Raspberry pi to connect to the weight or pressure sensor and relay data to our remote

server
● Oscilloscopes to observe the behavior of the weight sensors - voltage gain, offset, delay,

accuracy
● Function generators to provide regular, sophisticated waveforms to stimulate the weight

sensors
● DC voltage sources to provide regulated power to the weight sensors
● Digital multimeters to observe the value - current, voltage, resistance - of the weight

sensors with differing loads

The following software will be used:

● Android Studio provides an emulator for any team members without an Android phone

36

● Postman allows testing of the REST API calls on our server
● MySQL Workbench will be used to test storage within our databases

The end product of this project will result in one instance of the remote server - running multiple
services - and many instances of sensor devices - many users having many sensors. This also
includes many mobile devices interacting with the system.

5.3 Functional Testing
Functional testing will be conducted by user acceptance testing for each use case. A test plan
with acceptance criteria is outlined for each of our use cases in the table below.

Use Case Testing Plan Acceptance Criteria

1. Install and Set up an
Inventory Sensor
Device

The device is powered on for
the first time by the user - it
has previously been
programmed by us. The user
will be given instructions via
the Android application. The
application will walk them
through the setup process -
connecting the device to their
wifi network, calibrating the
weight thresholds, and
naming the item that the
sensor is measuring - and
account creation if they do
not already have an account.

The sensor device should be
successfully registered to the
user’s account - and the user
should have an account, if
they did not have one
previously. The inventory
service - remote server -
should now be aware of the
sensor device and relate it to
the user.

2. View inventory status The user opens the Android
application on their device
and goes to the inventory
menu. They view the status -
relative inventory amount - of
the items that are being
tracked by sensor devices
associated with their account.

The user should be able to
view the inventory status of
all sensor devices associated
with their account. The
sensor reading should be
timely - updated within an
hour of viewing the status -
and accurate - based on the
user’s calibration.

3. Viewing and
modifying the
shopping list

The user opens the shopping
list menu in the Android
application. They modify their
shopping list by adding,
removing, or updating the
quantity of items on the list.

The user should be able to
modify their shopping list -
remove, add, and update
quantity - and have the
changes reflected in the
application the next time they
open the application - in other

37

words, the remote server
needs to save the changes.

4. Automatic inventory
tracking

The user decreases the
quantity - the weight
decreases - of an item that is
being tracked by a sensor
device - the device is already
set up and associated with
the user’s account. Both
small decreases and full
depletions of inventory are
simulated.

After a change in the
inventory - weight - that a
sensor measures, the
inventory server updates the
stored inventory value in the
database. If the value is
below the user’s set “low”
value - established during the
sensor setup process, then
the item - whatever item the
sensor is measuring - is
added to the user’s shopping
list.

5. Receiving shopping
recommendations

A user with an established
shopping list - with multiple
items that can be found at
multiple different stores -
opens the Android
application. They open the
“start shopping” menu to
receive shopping
recommendations.

The user should receive
shopping recommendations
based on their current
location, their shopping list,
and their input optimization
criteria - saving the most
time, saving the most money,
or somewhere in the middle.
The recommendations are
also based on store proximity
and availability - operating
hours, available items in
stock, sufficient quantity in
stock at the specific store.

Table 2: Functional Testing Plan & Acceptance Criteria

5.4 Non-Functional Testing
After the functional requirements of the project are satisfied and validated by the testing defined
above in section 5.3, we will conduct non-functional tests in order to ensure the quality of the
product beyond the visible result to the user. System testing, stress tests, and monitoring will be
conducted as described for each area below:

Performance Testing

● Monitor the network use while the inventory sensors are active with the user’s home
● Monitor the network, battery, RAM, CPU, and storage usage on the smartphone when

the app is running and when the app is in the background

38

Security Testing

● Use a packet sniffer to try to gain access to user information
● Use SQL injection and buffer overflow attacks to try and break both client and server

code

Usability Testing

● User testing on outsiders who are unfamiliar with our project can indicate whether the
project and the user interfaces are usable enough or if they need additional explanation.

Scalability Testing

● We are initially focusing on smaller data sets to simplify the scope of the
recommendation problem - otherwise we are dealing with an NP-complete algorithm
problem. Later on, we can introduce more data and possibilities for recommendations
and test the algorithms that we have designed. We can also simulate a large number of
sensors or users to see how our system scales.

5.5 Design & Development Process

During the fall semester, the team followed the process illustrated in Figure 9 below while
designing the solution. First, we researched different options for hardware and software
technologies that could be used to solve the problem at hand. After comparing the options, we
narrowed it down and made selections based on a list of pros and cons for each. Currently, we
are in the prototyping phase, where we will create rough prototypes of the system components.
For example, we currently have prototypes of the sensor devices using Raspberry Pi
microcontrollers and weight sensors. In the beginning of the spring semester, we will still
iteratively prototype, test, and improve the designs of each component, making small
improvements or changes with each iteration.

39

Figure 9: Project Testing & Iterative Development Process Diagram

5.6 Results
During the fall semester, we prototyped many things on the Android side. The three main
prototypes focused on encrypted communication, background tasks, and notifications. We
created a prototype Android App that communicates with a Node.JS server using HTTPS
(encrypted network), and determine if there was a change in the server’s inventory quantities. If
the measured quantity of an item falls below a specific threshold, it will create an Android
notification on our device. The prototype demonstrates our ability to communicate through
encrypted networks, helping with our user privacy and security. We plan to incorporate it into the
final Android application next semester.

Additionally, a prototype inventory sensor was created using a raspberry pi microcontroller and
a force-sensing resistor to measure the weight of inventory items. We found that the
force-sensing resistors were not sensitive enough to provide a sufficient inventory measurement
because the resistance did not change in small enough amounts. We plan to use more sensitive
weight-sensors next semester to ensure that we can accurately measure inventory amounts by
weight.

6. Closing Material
This concludes the planning and designing of our system. Following will be the takeaways from
our work thus far.

6.1 Conclusion

40

Up to this point we have done extensive research on the tools and technologies that we can use
to help us develop a solution to our problem statement. After heavy ideation, we’ve landed on
design decisions based on given constraints and criteria created by the team. The current draft
summarizes our findings, decisions and vision for subsequent versions of the project.

From here, we plan to begin some rudimentary prototyping to approach our goal of a Minimum
Viable Product by March 15th. The smaller details of the designs will inevitably evolve but solid
foundations have been created.

6.2 References
 [1] A. Hauge, D. Bis, S. Guenette, H. Moser, N. Bix and B. Gruman. Automating Inventory

Management: Routing through Sensor Networks. Iowa State University: 2019.
http://sdmay19-29.sd.ece.iastate.edu/

[2] M. Quadrana, P. Cremonesi, and D. Jannach, “Sequence-Aware Recommender Systems,”
Sequence-Aware Recommender Systems, Feb-2018.
https://arxiv.org/pdf/1802.08452.pdf.

41

http://sdmay19-29.sd.ece.iastate.edu/
https://arxiv.org/pdf/1802.08452.pdf.

