Multi-Context Shopping Optimization

sdmay20-23: Max Garton, Ethan Shoemaker, Arnoldo Montoya-Gamez, Karla Montoya, Nate Wernimont, Jesrik Gomez

Advisor: Goce Trajcevski

April 29th, 2020

Team Introduction

Max Garton Computer Engineering Meeting Lead

Ethan Shoemaker Computer Engineering Hardware Engineer

Jesrik Gomez Software Engineering Deployment Engineer

Nate Wernimont Software Engineering Backend Engineer

Montoya-Gamez Computer Engineering Frontend Engineer

Karla Montoya Software Engineering UI Engineer

Project Vision

Saving shoppers time and money by offering shopping recommendations

sdmay20-23 | 3

Market Survey

Existing Offerings

- Bottomless Coffee
 - Limited to coffee
 - One source of product
 - Online delivery
- Online shopping platforms
 - Multiple stores
 - Online and pickup
 - No automatic inventory detection

Our Project

- Generalized to most items or goods
- Any source of product (with online listings)
- In-store purchases using online information
- Automatic inventory detection

Use Case Diagram

sdmay20-23 | 5

Functional Requirements

- Access to interact with the backend system and services
- Automatic inventory measurement
- Automatic shopping list curation
- Shopping recommendations
- User notifications of sensor status changes

Non-Functional Requirements

- Performance
- Scalability
- Longevity of sensor devices

Ideal Design Considerations:

- User privacy
- Security

Technical Considerations

- Inventory sensor device: Arduino vs Raspberry Pi
- Cloud resources: Amazon Web Services vs Microsoft Azure vs IBM Bluemix
- Frontend application: Mobile application vs web application, iOS vs Android

Potential Risks & Mitigation

Security and Privacy

System Availability

Availability of Contextual Data

Scalability

Project Schedule

2019 Sep

<u>Task</u>	<u>January</u>	<u>February</u>	<u>March</u>	<u>April</u>	
Sensor Setup Process	N	1G			Inventory Sensor
Data Collection Process	E	S			Device
Routing Service		JG			Backend Services
Recommendation Service		NW			
Inventory and Shopping List View	A	M			Mobile App
Shopping Recommendation Screen		КМ			Integration Tasks
Sensor Enrollment Integration					
User Login Integration					
Low Inventory Integration					
Store Viability Integration					
Reiterate and Add Features					
Project Kickoff Sep 16	Finalized Dec 6	sign		MVP Mar 15	Final Product Apr 15
Oct Nov	Dec	2020	Feb N	1ar	Apr 2020

Required Resources & Estimated Cost

Hardware: ~\$250

- 2x Raspberry Pi 3+ A (\$30 ea)
- 2x Raspberry Pi Zero W (\$30 ea)
- 10x Weight sensors (\$6 ea)
- Circuitry & enclosures (\$70 ea)

Cloud Resources: \$0

Total Cost: ~\$250

Functional Decomposition

Parallelograms are activities

Rectangles are objects

Containers are databases

Not pictured: users service

Major Features

- Automatic inventory tracking
- Auto-curated shopping list
- Shopping optimization via cost and time routing

Inventory Sensor Device Design

- Measures inventory by weight
 - Checks at regular intervals
 - Sends updates to remote inventory service
 - Calibrated empty, low and full weights during setup
- Configured to connect to user's WiFi network

Android Application Design

sdmay20-23 | 15

User Interface Design

6:48 🛇 🖬 🔸	• 🗣	⊿ 🛛 59%
MultiContextOptimization		
Chocolate Milk		
Eggs		
□ Flour □ Bananae		
Tortilla Chips		
🗆 Salsa		
▲ = •		-
List		÷
<		
	1:-	

6:51 🕥 I	₽•		• 💎	1 🛿 59%
MultiC	ontextOpt	imizatio	n	
Milk				
Beer			_	
Eggs				_
Chee	se			-
Juice				
•	=	H	Inventory	٥
	<	-		
S	one	or S	tatu	c
3	C113		Jalu	3

Backend Services Design

- Users Service
 - Handle user account details
- Sensors Service
 - Receive & process inventory measurements
- Inventory Service
 - Track inventory
- Routing Service
 - Route user to stores given shopping needs

Data Design

• Simple tabular structure

• User has:

- Inventory
 - Quantity needed for each item
- Sensors
- Min and max weight
- Current value
- Stores are unrelated entities used in recommendation computation
- Items in stock
- Price of each item
- Location

inventory 🔹 🔻	📃 items_metadata 🛛 🔻	📃 user 🛛 🔻	sensor_metadata
item_id VARCHAR(50)	<pre>item_id VARCHAR(50)</pre>	💡 username VARCHAR(50)	<pre> sensor_id VARCHAR(50 </pre>
username VARCHAR(50)	description VARCHAR(200)	password VARCHAR(50)	🔷 min FLOAT
quantity BIGINT	Indexes >		threshold FLOAT
ndexes 🕨		♦ last VARCHAR(50)	
		Indexes	♦ username VARCHAR(5)
🔲 store items 🔹	sensor_values v		item_id VARCHAR(50)
store id VABCHAB(50)	<pre> sensor_id VARCHAR(50) </pre>	store_locations v	Indexes
item id VABCHAB(50)	♦ value FLOAT	<pre>store_id VARCHAR(50)</pre>	
price ELOAT	Indexes 🕨	♦ store_name VARCHAR(50)	
available TINYINT		Iocation POINT	

System Design and Technical Considerations - Software and Hardware Platforms

Web Server

- **MySQL**

Mobile Platform over Web Platform

- Android over iOS
- Java

Inventory Sensor Platform

- Raspberry Pi over Arduino
- Python

Functional Testing

- Create an account and sign in
- Install and set up an inventory sensor device
- View inventory status
- Viewing and modifying the shopping list
- Automatic inventory tracking
- Receiving shopping recommendations

Functional Testing

- Install and set up an inventory sensor device
 - a. Power on a sensor for the first time
 - b. Open the sensor setup screen
 - c. Follow setup instructions on screen
- Acceptance criteria:
 - a. The sensor device is connected to the user's wifi network
 - b. The inventory service relates the new sensor to the user

Integration Testing

- Install and set up an inventory sensor device
 - a. Sensor device registers with sensor service and has an assigned sensor ID
 - b. Sensor service associates the sensor with the user

Testing Goals

- Non-Functional Testing
 - Scalability
 - Performance
 - Security
 - Usability

Engineering Standards and Design Practices

Technology Standards

- HTTPS
- RPC
- IEEE 802.11 Wifi
- IP & TCP

Design Practices

- Iterative prototyping
- Microservice architecture
- Modular design
- Object oriented programming

Mobile Application Demo

sdmay20-23 | 25

Sensor Setup Demo

sdmay20-23 | 26

Challenges & Takeaways

Challenges

- Low tier of cloud computing platform
- Busy schedules of team members
- Difficulty working remotely with hardware

Takeaways

- Collaboration on large tasks accelerates completion
- Work earlier instead of harder
- Integration planning from the start

Image Sources

- Bing Maps
- <u>Clipart Wiki</u>
- Walmart
- Target
- Aldi
- Hy-Vee