
1

Final Report

Team: sdmay20-23 Client: General Public Advisor: Dr. Goce Trajcevksi

Multi-Context Shopping Optimization
Team Members:

Max Garton - Sensor Setup Engineer
Jesrik Gomez - Deployment Engineer

Karla Montoya - User Interface Engineer
Arnoldo Montoya-Gamez - Frontend Engineer

Ethan Shoemaker - Sensor Engineer
Nate Wernimont - Backend Engineer

Team Website: http://sdmay20-23.sd.ece.iastate.edu
Revised: 4/25/2020

2

Table of Contents

1. Introduction 4
1.1 Acknowledgement 4
1.2 Problem Statement 4
1.3 Previous Work and Literature 4
1.4 Use Case Diagram 5
1.5 Intended Users and Intended Uses 5
1.6 Assumptions and Limitations 7

2. Specifications and Analysis 8
2.1 Functional Requirements 8
2.2 Non-Functional Requirements 9
2.3 User Interface Requirements & Specifications 10
2.4 Technologies Used and Rationale 10

2.4.1 Inventory Sensor: Weight Dependent Resistor 10
2.4.2 Sensor Device Microcontroller: Raspberry Pi 10
2.4.3 Mobile Development Framework: Android 11
2.4.4 Backend Technologies: MySQL Database & Go Server 11
2.4.5 Cloud Computing Platforms: Microsoft Azure 12
2.4.6 API and Data Interchange Format: gRPC and Protocol Buffers 12

2.5 Engineering Standards and Design Practices 12

3. Revised Design 12
3.1 Overall System Design 13

3.1.1 System Component Diagram 13
3.2 System Component Designs 13

3.2.1 Inventory Sensor Device Design 13
3.2.2 Backend Service Designs 15
3.2.3 Data Storage & Transmission 16
3.2.4 Routing Algorithm Design 17
3.2.5 Android Application Architecture 18
3.2.6 User Interface Design 18

4. Implementation 19
4.1 Sensor Device Implementation 19
4.2 Software Development Process 19
4.3 Features and Implementation Strategies 20

4.3.1 Inventory Sensor Setup (Max Garton) 20

3

4.3.2 Inventory Measurement (Ethan Shoemaker) 21
4.3.3 Shopping Recommendation (Nate Wernimont) 21
4.3.4 User Shopping List Feature (Karla Montoya) 21
4.3.5 Low Inventory Notifications and Actions (Arnoldo Montoya-Gamez) 21
4.3.6 Inventory Monitoring (Jesrik Gomez) 22

5. Testing 22
5.1 Functional Testing 22
5.2 Non-Functional Testing 24

6. Closing Material 25

7. References 25

Appendix I: Operation Manual 26

4

1. Introduction

1.1 Acknowledgement

The team thanks the Iowa State University department of Electrical and Computer Engineering
for giving us resources, guidance and expert consultation. We appreciate the Electronic
Technology Group for providing us with our team website server and hardware components for
the project. Thank you to Goce Trajcevksi for meeting with us weekly to give us guidance and
advice throughout the project.

1.2 Problem Statement

Consumers are presented with many different ways to shop - going to a favorite store, going to
the closest store, or going to the store where an item’s price is lowest, or taking the most
efficient route to reach several stores. How can a consumer know that the choice they have
made is the best choice? How can we provide an optimal shopping recommendation to a
consumer using a combination of contextual information such as the user’s current inventory,
the user’s current location, the user’s shopping list, stores in proximity to the user, hours of the
stores, as well as the stores’ availability and prices for items?

Our solution is to develop a system that utilizes microcontrollers to automatically monitor the
quantity of items that a user has in their household. The microcontrollers would communicate
the data to a remote server that tracks the user’s inventory of several items. This inventory data
would be accessible and modifiable via a smartphone application. The user would also be able
to utilize this application to maintain a shopping list which is also automatically curated based on
detected low inventory values in their household. The app would then provide the user with
recommendations based on the user’s current location, inventory data, the supply of items at
nearby stores, and other contextual information to suggest an optimal way for the user to shop.
Figure 1 in section 1.4 illustrates these identified use cases.

1.3 Previous Work and Literature
A previous senior design team at Iowa State University worked on creating a “smart bin” device
that measures the quantity of an item based on the measured weight, combined with software
that helps businesses restock products more efficiently [1]. While this project aims to solve a
similar problem, the user that we are targeting is a general consumer or shopper, rather than a
business. The project had a lower cost than our anticipated cost - their project required $80
minimum purchase of microcontrollers and sensor modules, while our anticipated cost is under
$250. In addition, the Multi-Context Shopping Optimization project includes the possibility of

5

extending the optimization to multiple shoppers, which differentiates it from past projects. A
document detailing Sequence-Aware Recommender Systems states that it will discuss some
relevant topics to any Recommender Systems; however, these are typically geared towards
more general scenarios where the system scope is larger than what our system is designed to
do. Such things include user-item pairing matrices to predict other user-item ratings and
session-based recommendations. These do not apply to our project since we are not strictly
developing recommendations for users based on their habits. We are providing
recommendations based on factual information for which an objectively optimal selection can be
chosen, such as the store that is closest and has the cheapest total cost for all of the items [2].

There are few widely known consumer services that offer similar combinations of automated
inventory measurement and shopping recommendations to this project. One known service,
Bottomless, is limited to only coffee bean measurement. A scale connected to the customer’s
wifi network tracks the weight of coffee beans that the customer has. When the amount of
coffee beans reaches a certain level, Bottomless automatically orders more beans and ships
them to the customer [3]. While Bottomless’ automatic inventory tracking has overlap with our
project, the scope of our inventory tracking is on any household item that is purchased regularly.
Our project focuses on in-store shopping rather than online delivery of goods, and has no
restriction on the brand or source of the items.

1.4 Use Case Diagram
Our use case diagram (Figure 1) below illustrates all actors, services and use cases
implemented in our project. The backend services are separated into microservices, but are
shown as a monolith here for simplicity.

1.5 Intended Users and Intended Uses
This solution is intended to be used by any consumer that shops regularly. These regular
shoppers will typically be interested in saving money and time in their grocery-shopping trips.
This could include:

● Families in an urban or suburban setting within 20 miles of a store
● Members of apartments who share kitchens and household supplies

We intend for this application to be used on an on demand basis whenever the user would like
to shop or view their current inventory. Figure 1 below illustrates the various on-demand uses of
the application.

6

Figure 1: Use Case Diagram

The use cases are further described below from the perspective of a specific user, Mr. Smith, for
continuity:

1. Mr. Smith creates an account and signs in
a. Mr. Smith opens the Android application and enters an email and password to

create an account
2. Mr. Smith sets up a sensor module to add it to his account

a. Mr. Smith opens the Android application and opens the “add a sensor” menu

7

b. Mr. Smith then finds the local WiFi of the sensor device and connects to it
c. The application prompts him to calibrate the sensor device using an item of

known weight
d. The application prompts Mr. Smith to enter the Wifi SSID and passkey of his

home WiFi in order for the sensor device to connect to his home network
e. After joining the network, Mr. Smith is prompted specify the details of the item

that the new sensor device is measuring
3. Mr. Smith views the status of his inventory

a. He opens the Android application and logs into his account
b. He can see his current inventory amounts, such as:

i. Milk - full
ii. Eggs - 50% remaining
iii. Detergent - 10% remaining

4. Mr. Smith views and modifies his shopping list
a. He opens the Android application and views his current shopping list
b. He adds another item to the shopping list
c. He updates the quantity needed of an item on the shopping list
d. He removes an item from the shopping list

5. The inventory sensing module tracks Mr. Smith’s inventory of items
a. A sensor module reading is sent to the remote inventory server
b. The inventory server identifies this as a low amount
c. The server updates the stored inventory value for that item
d. The server adds the item to Mr. Smith’s shopping list if the low value is below Mr.

Smith’s set threshold
6. Mr. Smith gets shopping recommendations

a. He opens the Android application and opens the “start shopping” menu
b. He establishes his shopping criteria within the app:

i. Store location - maximum distance away
ii. Prioritization of price and time - via a slider

c. He submits the request for shopping recommendations and is presented with
recommendations on which stores to shop at, which items to buy at which stores,
and the most optimal ordering to visit the stores

1.6 Assumptions and Limitations
In order to narrow the scope of the problem statement, we introduce the following assumptions
and limitations:
Assumptions

● The user’s home has wireless internet
● The user owns a GPS and data enabled Android device that they carry with them at all

times
● External data including the inventory and price data from stores, is publicly available via

one or more APIs

8

● The user has an available power outlet within reasonable distance of an item that is
being measured

Limitations
● The application will only available on Android devices
● Any devices used to measure users’ inventory of items must be able to operate in within

a refrigerator in lower temperatures
● The entire system must have a minimal impact on the user’s internet traffic. Data should

only be transmitted when needed.
● The application should not use an unreasonable amount of battery life on the user’s

Android device.
● The primary user interface will be within the Android application.
● Security and user privacy are valid concerns regarding this project, but they are not the

major focus of this work.

2. Specifications and Analysis
Below we will discuss functional and non-functional requirements for the application. Also
included is an explanation of selected technologies and our rationale in making these decisions.

2.1 Functional Requirements
● Access to interact the system

○ The system shall allow a user to interact with the system via a user interface in
an Android application

○ The system shall allow a user to create an account, registering with the system
using an email and a password of their choosing

○ The system shall allow a user to log into the system using an existing account
○ The system shall allow a user to log out of the system

● Inventory measurement
○ The system shall monitor the user’s inventory of specific items
○ The system shall allow a user to begin measuring a new item by setting up a new

sensor
○ The system shall allow a user to indicate to the system what a full and empty

weight should be for a specific item
○ The system shall allow a user to use an existing sensor to measure a new item

● Shopping list curation
○ The system shall allow a user to manually add or remove items to a shopping list
○ The system shall automatically add items to the shopping list that were detected

to be low in inventory

9

○ The system shall automatically remove items from the user’s shopping list after
they have recently purchased them (after receiving shopping recommendations
from the system)

● Shopping recommendations
○ The user shall specify a maximum distance within which they would be willing to

travel to grocery stores. Then, they can also specify their preferences for whether
to emphasize saving money or saving time by traveling to less grocery stores.
The system will then route them between stores, specifying which items to buy at
which stores.

● Notifications
○ The system shall notify the user when an item is detected to be low in inventory
○ The system shall notify the user when they are near stores where items on their

shopping list can be purchased

2.2 Non-Functional Requirements
● Performance

○ The system should be capable of providing the user with up to date information
about their inventory and shopping list in real time

○ The system should provide shopping recommendations on demand in real time
○ The user interface should not have noticeable buffer or lag, subject to the speed

and availability of the internet connection
● Scalability

○ Capable of supporting 100,000 users
■ Including multiple sensors per user

● Longevity of sensor device
○ The sensor device should be capable of lasting at least two weeks when

powered via a battery.
○ The sensor should either maintain its accuracy for an extended amount of time or

allow the user to recalibrate on an as needed basis.
○ The sensor device should be able to withstand having weight of up to 3 pounds

placed on it repeatedly for an extended period of time.
The following are identified as important design considerations that should especially be taken
seriously when working with user data. We acknowledge that these are ideals, but they are not
a major focus of this project as a demonstration of concept.

● User privacy
○ The system shall not collect any unnecessary information about users (necessary

information includes the user’s inventory measurements, shopping preferences
and shopping list)

○ The system shall not send or expose any user data to third parties or applications
● Security

○ The backend services shall be invulnerable to SQL injection
○ Any requests involving user data shall be authenticated and secured

10

2.3 User Interface Requirements & Specifications
The main point of interaction with the system is the user interface implemented as an Android
application. It is paramount that this application provides an attractive, user-friendly, responsive
interface to the user. The following requirements ensure that the application meets these
expectations.

● Visuals
○ The user interface should have a consistent look across all screens and menus

● User Experience
○ The user interface should have simplistic, straightforward navigation
○ The user should be presented with visual instructions for any features that are

not self explanatory
● Performance & Responsiveness

○ The user interface should not have any perceivable delay or lag, subject to
networking constraints

○ Any data or settings changes made by the user should be reflected in the
interface without noticeable delay

2.4 Technologies Used and Rationale
Below we discuss our technology considerations for different components of the project. We
also explain in this section how each technology is used in the project.

2.4.1 Inventory Sensor: Weight Dependent Resistor
Two main options were considered for the sensor portion of the inventory device. One was a
simple force sensing resistor which would have a resistance value which varied depending on
the amount of force being placed on it. This made it incredibly clear on how we would integrate
it. We would use an analog input on our microcontroller and drive a voltage through this resistor.
This device is also very thin and unobtrusive. Another option considered was a weight scale
sensor which already included a platform for placing items on it. This option also includes an
inline ADC and serializer.

Since the force sensing resistor could not deliver consistent outputs and the microcontroller
option we chose did not have an analog input, we selected the latter option. An added bonus for
this option was also the open source Python library for reading values from the sensor.

2.4.2 Sensor Device Microcontroller: Raspberry Pi
We considered two major microcontroller platforms: Arduino and Raspberry Pi. These were our
primary considerations due to their wide use among developers, support network, and number

11

of libraries available. Both platforms have varying sized boards that allow rapid prototyping or
more refined, compact designs. We primarily considered the Arduino Uno and the Raspberry Pi
3 model B. These are the most widely used microcontrollers, both having a large support
network.

Due to the need for communication between the sensor device and remote, cloud-based
backend services, we recognized that the microcontroller would need to have an internet
connection. More specifically, the connection needed to be wireless to allow the sensor to be
used in locations where there is not a physical ethernet jack available. Both the Raspberry Pi 3
model B and Zero “W” have wireless internet built in, while only the smaller Arduino Nano IOT
board does [4][5]. Additionally, we wanted to have flexibility in terms of programming languages
and libraries used on the microcontroller. Because the Raspberry Pi boards run a version of
Linux, these were the most flexible option. We selected Raspberry Pi as the microcontroller
platform due to its flexibility and wide offering of libraries. More specifically, we used the larger
Raspberry Pi 3B due to its pin headers, which made rapid prototyping easier. If this project was
marketed directly to consumers, we would use the smaller Raspberry Pi Zero “W” board so that
we could make the inventory sensor device smaller and more efficient.

2.4.3 Mobile Development Framework: Android
The team considered the two most common mobile operating systems: Android and iOS. We
ended up using Android development for several key reasons. Android is the most common
mobile operating system, allowing more potential users to install the app. Android has a wide
range of documentation such as developer guides, design guidelines and APIs that can easily
be integrated into our app [6]. Developers can create apps in Java, which the entire team is
familiar with. On the other hand, the majority of iOS applications need to be programmed in
Swift, which the team is unfamiliar with. Lastly, at least half of the team is familiar with Android
application development from previous experiences.

2.4.4 Backend Technologies: MySQL Database & Go Server
For our databases, we had two primary choices: NoSQL and SQL. Since our data is especially
tabular, there was less of an advantage to storing blobs in a NoSQL database. As such, we
went with a SQL database. Given that we were using a SQL database, we opted to use MySQL,
rather than alternatives like SQL Server, MariaDB, or SQLite, due to its friendliness and ease of
use [7]. It is incredibly simple to set up a MySQL server locally, and members on our team were
familiar with the syntax of MySQL.

For our backend server, we considered several languages. Our primary considerations were
NodeJS and Go. We did not want to use a JVM stack because it was less simplistic to scale
horizontally. Between NodeJS and Go, we went with Go because it is designed from the ground
up having simple concurrency. Go allows us to easily implement our microservices and all
required backend functionality [8].

12

2.4.5 Cloud Computing Platforms: Microsoft Azure
We broke our system down into microservices in order to meet availability and scalability
requirements. We considered three major cloud computing platforms: Amazon Web Services,
Microsoft Azure, and IBM Cloud. All three of these options offered free tiers sufficient for
development, and the ability to scale resources as needed.

We selected Microsoft Azure [9] to host our backend services because one third of the team
already had experience with the platform. Moreover, it was also the platform that offered the
best free tier services [10] for our storage and containerized microservices’ needs.

2.4.6 API and Data Interchange Format: gRPC and Protocol Buffers
The two primary RPC frameworks are Apache Thrift and gRPC. After analyzing both solutions,
we opted for gRPC due to its reliance on protocol buffers. Thrift message serialization is rather
verbose. Since we want to be able to scale for hundreds of thousands of users, we wanted to
use the lightest weight messaging format. On top of that, gRPC had a few features that Thrift
did not have, such as streaming [11]. We wanted to prepare for eventualities where users could
have hundreds of items in their shopping cart. These messages would get rather large, and we
foresaw performance improvements by migrating to using streaming formats eventually.

2.5 Engineering Standards and Design Practices
The following engineering standards and design practices were applied in the design and
implementation phase of this project.
Technology Standards and Protocols

● HTTPS
● gRPC
● IEEE 802.11 Wifi Protocols
● IP & TCP protocol

Design Practices
● Iterative prototyping
● Microservice architecture
● Modular design
● Object oriented programming

3. Revised Design
The system design has evolved slightly since our plan from last semester. The major functional
components and flow of information have remained the same, but the details have changed in
terms of technologies and implementation. In this section we will discuss the significant design

13

patterns, data models, backend services, external services, and hardware components that we
have used in the project.

3.1 Overall System Design
The system is divided into four primary components: the inventory sensors, the Android
application, the backend services, and the external APIs that we depend on for store and map
data. We discuss these components as a whole and individually in the following two sections.

3.1.1 System Component Diagram

Figure 2: System Component Diagram
The diagram above depicts the four primary system components. Each of these components is
discussed in detail in section 3.2, along with the frameworks and protocols that support the
exchange of data between the components.

3.2 System Component Designs
Each of the major system components involved in this project are discussed in detail in the
following subsections.

3.2.1 Inventory Sensor Device Design
The inventory sensor device consists of the Raspberry Pi model 3 B and a weight scale which
includes an analog to digital converter (ADC) and data serializer. The Raspberry Pi will be
running a version of Linux (Raspbian) which has been preloaded with our data sensing and
command processing programs. The microcontroller has been pre-configured to run the
necessary programs at startup.

14

The sensor device is first initialized in a wireless access point mode in which it broadcasts its
SSID for the user to connect to via WiFi on their Android device. After the devices are
connected together, the user interacts with the Android app in order to pass the sensor device
the SSID and password for the user’s home WiFi network. This way, the sensor device may now
access the internet and communicate with the remote server.

Once it dialogues with the remote server, the user then sets an item for this sensor to be
tracking along with a maximum and minimum weight for this item. From here, the sensor device
will now automatically record the weight of the item on the scale every 15 seconds and store
this entry locally. Every hour (or otherwise requested by the remote server), the sensor will send
the most recently observed value to the remote server.

If the sensor device ever loses power or must reboot for any reason, the device will still
automatically reconnect to the user’s WiFi and will not need to be reconfigured.

Figure 3: Inventory Sensor Device Architecture

15

3.2.2 Backend Service Designs
Models: Next, we will go through the various models included in the backend services. There
are many different objects passed around throughout the backend service.

Item: At its core, an Item represents a grocery item for a consumer. An Item tends to include the
ID associated with an item and the item’s description. Depending on the Item’s context, it
sometimes includes it’s pricing or it’s quantity. For example, in the stores microservice and the
routing microservice, Items include pricing. In the inventory microservice and the routing
microservice, it includes quantities. In the sensor service, Items include neither.

Cookies: When the frontend submits a successful login request, they receive a response that
includes a Cookie. A Cookie is simply a UUID that is used to associate a user to their successful
login request. The frontend can then remember that Cookie and include the Cookie on all other
requests to the backend in order to authenticate themselves.

Instruction: When the frontend needs to get routing recommendations, they need to be able to
understand how to travel to the various stores and which items to buy at which stores. To do
this, the backend gives them a sequence of Instructions. These Instructions are an ordered list
containing information about the Store and the list of Items. A Store is simply a latitude,
longitude, and an ID that uniquely identifies that store. This information allows the frontend to
regenerate the directions using Bing Maps.

Sensors: When the frontend first registers a Sensor, it must include information such as the
minimum value of the sensor, the threshold at which the Sensor is considered low, and the
maximum value of the Sensor. The frontend then receives the ID of the newly created sensor,
which is a UUID used to uniquely identify that sensor. The physical sensor device can then use
that ID to report it’s values. After initial sensor registration, the frontend must also specify an
ItemID for that sensor. Sensors then also contain information about it’s most recently reported
value.

User: The final important entity in the backend is a User. A User consists of a unique username,
a password, the first name of the user, and the last name of the user. The first and last name of
the user is simply stored as metadata of the user.

Services: All of these entities are used throughout our microservices. We will now detail the
core functionality of each of the microservices.

User service: The user service is designed to be able to register, login, and logout users. That is
the only functionality that the user service provides. The user service functions by storing
information about the user in MySQL. Such information includes the username, first name, last
name, and a hashed version of the password. All data is stored in a single table within MySQL.

16

When a user logs in, they are returned a cookie that is a UUID. A key-value pair is then stored
in a Redis cache with the key being the cookie and the value being the username. Then, when a
user makes other requests, the other microservices can access the cache to map the given
cookie to the associating username.

Sensor service: The sensor service is used to register sensors, configure sensors, report values
for a sensor, fetch sensors for a user, and fetch low sensors for a user. All data for the sensor
service is stored in MySQL. There are two tables for the sensor service: a metadata table and a
values table. When registering and configuring sensors, the metadata table is used. When a
sensor reports values, the service tracks the most recently reported value for each sensor in the
values table. When authenticating requests, it accesses the Redis cache populated by the users
service.

Inventory service: The inventory service is responsible for tracking the items manually added by
users via the Android application. It can only modify the quantity of items needed by the user
and fetch all currently needed items for a user. It stores all data in a single MySQL table that
maps a (user, item_id) pair to quantities needed. This service also has access to the Redis
cache needed to authenticate users and transform cookies to usernames.

Routing service: The most complicated microservice is the routing service. It has a single
purpose, and that is to fetch routing information for a given user. When the frontend requests
routing for a user, the routing service will fetch all currently needed items from the inventory
service and all currently low sensors from the sensors service. It will then fetch all stores near
the user according to the users preferences. Then, it will find the cheapest places to purchase
every item and return that information to the frontend. It has no database backing. It also has
access to the Redis cache.

Store service: Because we could not get access to public store APIs, we were forced to mock
store data. In order to do that, we added a new store microservice. The store microservice
stores information about stores and their locations in a single table. It utilizes spatial data types
within MySQL in order to find stores near the customer. Then, there is an additional table that
maps (store id, user id) pairs to pricing information. There is no authentication needed to reach
the store service, but it is not exposed to the frontend. Only other backend services can access
it.

3.2.3 Data Storage & Transmission
Data is stored in mySQL relational databases, and data is transmitted by directly calling the
methods of each service with gRPC. We chose mySQL because of its ACID architecture, and
because most of the team already had experience with relational databases and querying.
Using mySQL constrained us to using relational data models; however, this was not an issue.

17

We limited the use of foreign keys in the database schema because foreign keys limit
performance. Additionally, many schema migration tools cannot migrate tables with foreign
keys. Instead, we rely on our application using correct logic.
We used Redis to store cookies of logged in users to facilitate their access.

Figure 4: Database tables

3.2.4 Routing Algorithm Design
When implementing the algorithm, we started with a simplistic algorithm that accomplished our
goals. We were unable to provide further functionality to the algorithm due to time constraints.
So, in its current state, the algorithm has three primary phases. The first phase is an information
gathering phase.

In the information gathering phases, the algorithm first converts the given cookie into a
username. Then, it fetches the manually added items for the user from the inventory service.
Then, it asks for any low sensor values from the sensor service. It combines these two lists of
items to get a superset of all items needed. Then, it queries the store service for a list of stores
within a configured value of the user. The user sets this radius on their mobile device. Finally, it
fetches the pricing for every item from every store. It can then use this information to find which
store has the cheapest items in the selection phase.

In the selection phase, every item is iterated over in order to find which store has the cheapest
price for that item. This is the store where that item will be purchased within. This is the phase
where we had planned most further improvements. We wanted to give the user a slider that
would let them choose whether they wanted to prioritize time or money and by how much. In the
event that the user wanted to prioritize time, the algorithm would weigh the cost benefits of
going to additional stores with the added time cost of traveling to extra stores. However, the
algorithm is currently implemented to always prioritize cost at the expense of time.

18

The final phase is the routing phase. In this phase, the backend orders the selected stores from
the selection phase into a navigable list. Instead of implementing a traveling salesman
algorithm, which is NP-hard, we chose to navigate to stores in order of their proximity to the
user. While this is less than ideal, we chose this approach due to time constraints. If we had
further development time, we would iterate on this in order to choose an approximate version of
the TSP problem, giving the user a good route, but not compromising execution time.

3.2.5 Android Application Architecture
The Android application is divided into packages that distinguish the models, views and
controllers. The design is open for extension but closed for modification to create modular,
flexible software and meet the non-functional requirements. Object-oriented design principles
incorporated throughout the design, for instance by implementing interfaces to allow us to mock
the data controller. Figure 5 below illustrates the software architecture of the Android
application. An example of how it is divided is, in the figure below, we have different views, each
pertaining to different data, being the view in an MVC design model. The data controller is the
controller is the controller in the MVC model, and the DB is our model.

Figure 5: Android Application Architecture

3.2.6 User Interface Design
The user interfaces within the Android app were designed to support the primary use cases
defined in the project. First, interfaces were sketched and mocked, envisioning how functionality
and information would be displayed to the user. After determining what the ideal layouts and

19

screens would look like, the team researched existing Android user interface components that
can be used. Our initial mockups were modified to take advantage of Android’s existing UI
components to allow us to focus on implementing the functionality instead. Throughout this
process, we strived to design interfaces that provided a positive user experience. We did this by
adhering to the following design practices:

● Clearly label icons and buttons
● No more than three actions should take place on one screen
● Provide feedback to the user’s responses via visual changes and notifications
● Maintain consistent visual design throughout the app

4. Implementation

4.1 Sensor Device Implementation
We had previously experimented with different sensor options in the fall semester. We had
arrived at a plan in terms of the microcontroller and sensors to use to create the sensor device.
This semester, we determined more specific functional requirements for the sensor device, such
as the need to perform necessary tasks on boot without any user input. This was implemented
using daemons written in Python. We also added the requirement that the user must be able to
reset the sensor to its original, unconfigured state if needed. The
device would then need to enter its setup mode again. This
requirement was satisfied by adding a “reset” button that the user
may press should they need to reset the sensor device. All sensor
device implementation and testing was done using the Raspberry Pi
model 3 B. We have identified that the smaller, more efficient
Raspberry Pi Zero “W” may be used to assemble a compact, finalized
sensor device if this were a consumer product. However, in the
interest of rapid prototyping, we stuck with the original model 3 B.

4.2 Software Development Process

During the spring semester, the team used an agile development process to focus on a subset
of the development items during each sprint. We had already established functional
requirements, features that satisfy these requirements, and rough prototypes during the
previous semester. This semester, we implemented them by first specifying the integration
details for features that require communication between devices. Data interchange formats and
requests were defined in shared documents to the entire team. By predefining the integration
details, our team was able to easily mock the integration aspect of each feature until the other
components involved were also ready to integrate. After mocking the integration details, we
implemented the features. After implementation, functional testing was used to ensure that all
functional requirements were met. If any bugs or functional flaws were detected, the

20

development item moved back into the “implement, fix and refine” phase. After finally passing
functional testing and after other components were ready to integrate, the features were then
integrated so that the entire system supported them. After that, the functional testing was
repeated, using the newly integrated connections, to ensure that the functionality was still
correct when using data from other system components. Once again, if any defects were found,
the development item moved back to the “implement, fix and refine” phase. After passing
integration testing, the code changes moved to a code review process where peers review the
code and comment on any problems or inconsistencies with the rest of the project codebase.
After passing the code review, the code changes were finally merged into the main project
repository.

Figure 7: Iterative Development Process Diagram

4.3 Features and Implementation Strategies
We now describe in detail the implementation aspects of every major feature, and for each of
them we indicate the key role assignment. We note that as part of the collaborative activities,
the implementations of certain features were conducted jointly by multiple team members.

4.3.1 Inventory Sensor Setup (Max Garton)
The sensor setup is designed to be as simple for the user as possible. During initial setup, the
inventory sensor acts as a wireless access point, broadcasting its own WiFi network that the

21

user connects to from their Android device. Then, the user opens the application on their phone
and enters the sensor setup menu. From there, the application uses an IP socket for
communication between the Android device and the microcontroller. The user enters their
wireless network info, which includes the network SSID and passkey. This information is sent to
the sensor device, which then disables its own wireless access point and connects to the user’s
home wireless network. The Android application walks the user through every step of the setup
process with specific instructions. On the microcontroller, the network configuration is switched
between two states (serving as a wifi access point or connecting to the user’s wireless network).
This is implemented by using two sets of configuration files that are copied into the board’s
Linux operating system directories as needed to change configurations during setup or reset of
the sensor device.

4.3.2 Inventory Measurement (Ethan Shoemaker)
The inventory was recorded by starting daemons once the system had booted and using files as
well as signals to communicate between these daemons. A simple polling structure was utilized
in order to: 1) take a measurement every 15 seconds; 2) send the most recent measurement
every hour; and 3) listen for activities from the server and report an on demand measurement.
This was all done using Python as the language with the Pickle library for efficient file storage
and systemctl for daemonizing the programs.

4.3.3 Shopping Recommendation (Nate Wernimont)
The shopping recommendation feature was written on the backend, which was implemented in
Go. It lives within the routing microservice. It pulls data from the inventory microservice and
sensor microservice in order to get the items needed by each user. It also pulls data from the
stores microservice, which consists of mocked data for a few stores in the Ames area. It then
aggregates this data and returns it to the mobile application, which displays the data to the user.

4.3.4 User Shopping List Feature (Karla Montoya)
The user shopping list is displayed in a RecyclerView, which recycles a list of views to create
the illusion of a scrolling list. This list was created using Android’s LiveData framework, which
updates data on the user interface when it changes within the model. The Android ViewModel
framework was utilized to save, load and display data models in the user interface.

4.3.5 Low Inventory Notifications and Actions (Arnoldo Montoya-Gamez)
The Android application regularly polls the remote inventory service to determine if any of the
user’s inventory items are low (indicated by a low sensor reading). If this is the case, then the
user receives a notification that prompts them to add the item to their shopping list.

22

4.3.6 Inventory Monitoring (Jesrik Gomez)
The users’ inventory sensor devices send an inventory measurement to the remote inventory
service every 15 minutes, or when a change is detected. By regularly monitoring the data, we
can easily detect if a sensor has gone offline for any reason (when no update has been received
within 15 minutes). With each new measurement update, the remote inventory service stores
the new value so that it can be fetched and displayed by the Android application.

5. Testing
Due to the complexity of the project and the interconnections between components, we primarily
relied on functional testing to verify that the functional requirements were satisfied. Below we
will discuss our functional test procedures and results, as well as non-functional testing.

5.1 Functional Testing
Our team followed an agile approach to software development, where software changes were
typically focused on adding functionality to a use case. Because development on many of the
use cases took place in parallel between different team members, we established pre-defined
testing procedures that clearly laid out the initial conditions, the event trigger or user actions,
and then the expected outcome. The table below describes our testing procedures and
acceptance criteria for each of the use cases in section 1.5. The initials by each use case
column indicate the team member(s) responsible for conducting the respective tests. However,
as with our development items, each use case was developed and tested by several (and
oftentimes all) members of our team.

Table 1: Functional Testing Plan & Acceptance Criteria

Use Case &
Description

Testing Plan Acceptance Criteria

1 Create an
account
and sign in
(NW)

The user opens the Android application on
their device and enters account
information (email and a password of their
choice). They click “sign in or register” to
either create an account or sign in.

The application signs the user
in (via an existing or newly
created account) so that they
are presented with the main
application screen. If a new
user account was created, the
remote users service is now
aware of this.

2 Sensor
device
setup (MG)

The sensor device is powered on for the
first time by the user - it has previously
been programmed by us. The user will be
given instructions via the Android

The sensor device is connected
to the user’s wifi network and
registered to the user’s account.
The inventory service, a remote

23

application. The application will walk them
through the setup process (connecting the
device to their wifi network, calibrating the
weight thresholds, and naming the item
that the sensor is measuring).

backend service, is now aware
of the sensor device and relates
it to the user.

3 Viewing
inventory
status
(AMG)

The user opens the Android application on
their device and goes to the inventory
menu. They view the status - relative
inventory amount - of the items that are
being tracked by sensor devices
associated with their account.

The user can view the inventory
status of all sensor devices
associated with their account.
The sensor reading is up to
date and reflects the most
recently measured weight.

4 Shopping
list (KM)

The user opens the shopping list menu in
the Android application. They modify their
shopping list by adding, removing, or
updating the quantity of items on the list.

The user is able to modify their
shopping list by adding,
removing or updating the
quantity of items.These
changes are reflected in the
application the next time they
open the application - in other
words, the remote server also
saves the changes.

5 Automatic
inventory
tracking
(ES)

The user decreases the quantity of an item
that is being tracked by a sensor device
such that the weight of the item decreases.
The device is already set up and
associated with the user’s account. Both
small decreases and full depletions of
inventory are simulated.

After a change in the weight of
an item that a sensor is
measuring, the inventory server
updates the stored inventory
value in the database. If the
value is below the user’s set
“low” value that was established
during the sensor setup
process, then the item is added
to the user’s shopping list.

6 Shopping
recommen-
dations
(JG)

A user with an established shopping list
containing multiple items that can be found
at multiple various stores opens the
Android application. They open the “start
shopping” menu to receive shopping
recommendations based on contextual
information.The user adjusts their
shopping preference between saving
money and saving time accordingly.

The user receives shopping
recommendations based on
their current location, their
shopping list, and their input
optimization criteria of saving
the most time, saving the most
money, or somewhere in the
middle. The recommendations
are also based on store
proximity and availability
including operating hours,
available items in stock, and
sufficient quantity in stock at the

24

specific store.

Integration Testing
The functional testing procedures in the table above were utilized both during initial
development and during integration. The primary difference was that the initial development
testing ensured that the use case was supported in a closed, simulated environment. Integration
testing expanded the test procedures to use real data that is communicated to and from the
different components of the system.

5.2 Non-Functional Testing
After the functional requirements of the project are satisfied and validated by the testing
procedures defined above in section 5.1, we planned to conduct non-functional tests in order to
ensure the quality of the product beyond the functionality. Unfortunately, the team did not have
time to fully test all of the non-functional requirements specified in section 2.2. However, we
specify our plans to verify each of the non-functional requirements below.

Performance Testing

● Monitor the network use while the inventory sensors are active with the user’s home
● Monitor the network, battery, RAM, CPU, and storage usage on the smartphone when

the app is running and when the app is in the background

Security Testing

● Use a packet sniffer to try to gain access to user information
● Use SQL injection and buffer overflow attacks to try and break both client and server

code

Usability Testing

● User testing on outsiders who are unfamiliar with our project can indicate whether the
project and the user interfaces are usable enough or if they need additional explanation.

Scalability Testing

● We are initially focusing on smaller data sets to simplify the scope of the
recommendation problem - otherwise we are dealing with an NP-complete algorithm
problem. Later on, we can introduce more data and possibilities for recommendations
and test the algorithms that we have designed. We can also simulate a large number of
sensors or users to see how our system scales.

25

6. Closing Material
During the past two semesters, our team has identified a series of problems that can be solved
using technology and creativity. Our project aims to optimize several aspects of the shopping
experience, ultimately allowing users to save time, money and effort. Although we did not have
time to develop all of the use cases that we had in mind for this solution, we are satisfied with it
as a polished proof of concept. Future expansion potential for this project includes support for
collaborative shopping between family members or peers, more advanced inventory detection
using smartphone cameras, as well as the combination of online ordering for both delivery and
pickup at stores. The features that we have developed and the potential improvements identified
above can make a significant improvement in the consumer shopping experience.

7. References
[1] A. Hauge, D. Bis, S. Guenette, H. Moser, N. Bix and B. Gruman. Automating Inventory

Management: Routing through Sensor Networks. Iowa State University: 2019.
http://sdmay19-29.sd.ece.iastate.edu/

[2] M. Quadrana, P. Cremonesi, and D. Jannach, “Sequence-Aware Recommender Systems,”
Sequence-Aware Recommender Systems, Feb-2018.
https://arxiv.org/pdf/1802.08452.pdf.

[3] Bottomless. https://www.bottomless.com/faq
[4] Raspberry Pi Foundation. https://www.raspberrypi.org/products/
[5] Arduino. https://www.arduino.cc/en/products/compare
[6] Google Android Documentation. https://developers.google.com/android
[7] Oracle. MySQL Reference Manual. https://dev.mysql.com/doc/refman/8.0/en/
[8] Writing Web Applications. Golang. https://golang.org/doc/articles/wiki/
[9] Microsoft Azure. https://docs.microsoft.com/en-us/azure/?product=featured
[10] Microsoft Azure Free Tier. https://azure.microsoft.com/en-us/free/
[11] gRPC Documentation: https://grpc.io/docs/

http://sdmay19-29.sd.ece.iastate.edu/
https://arxiv.org/pdf/1802.08452.pdf.
https://www.bottomless.com/faq
https://www.raspberrypi.org/products/
https://www.arduino.cc/en/Products/Compare
https://developers.google.com/android
https://dev.mysql.com/doc/refman/8.0/en/
https://golang.org/doc/articles/wiki/
https://docs.microsoft.com/en-us/azure/?product=featured
https://azure.microsoft.com/en-us/free/
https://grpc.io/docs/

26

Appendix I: Operation Manual
This manual contains step-by-step instructions to help you optimize your shopping experience.
Getting Started

Step 1: Open the App Step 2: Enter Credentials
Enter a username and password of
your choosing, then press the
button to register a new account.

Step 3: You will be logged into
your account

27

Sensor Setup & Installation
Step 1: Open the Sensor Setup Menu
From the home screen, navigate to the sensor setup
screen by touching the sensor icon on the navigation
bar.

Step 2: Open Wifi Settings
Follow the on-screen directions. Click the button to
open your device’s wifi settings.

Step 3: Find and Connect to the Sensor
a. Locate the inventory sensor’s wifi network and

tap on it to connect to it. Note: depending on
your device, this settings menu may look
different.

b. Enter the password to connect to the inventory

sensor. The default password is
“PasswordXXXX!” where “XXXX” is the four
digit number found in the network name. Then
touch “connect” to be connected to the
network.

28

c. Verify that your device has connected to the

sensor’s wifi network. It may say “limited
connection” or “no internet”.

d. Navigate back to the multi-context shopping

optimization app by pressing the back button
on your device. This will return to the sensor
setup screen. The status should now indicate
that your device is connected to the sensor.

Step 7: Calibrate the Sensor
Follow the on-screen instructions to calibrate the
sensor. You should use an item that has a known or
labeled weight in grams. If the item has a decimal
weight, round it to the nearest whole gram. Then press
the “calibrate” button.

Step 8: Wifi Setup
Leaving the calibration item on the sensor, enter your
home wifi network SSID and passkey into the text
entries. Then press the button to connect the sensor to
the internet.

29

Step 9: Finish Setup
Continue following the on-screen instructions. You may
now press the button to finish the network setup. The
app will automatically navigate to the inventory screen,
where you should see the new inventory sensor.

Step 10: Viewing the new sensor
You should see the new inventory sensor on the
inventory screen. The app will prompt you to long-press
on it to specify the item that it is measuring.

Step 11: Specify the item
Specify the item that the new sensor is measuring. If
the item is from a specific store or brand, include that
information. If the item is generic, include the size or
other details.

Step 12: Verify & Finalize the Setup
You should now see the new inventory sensor tracking
the item that you specified. You may now place the
sensor in the location of the item (such as in the fridge
or in a cupboard). Ensure that the sensor is always
within range of a wifi network and plugged into a power
source.

30

Modifying the Shopping List
Navigating to the Shopping List

Step 1
From the home screen, tap the list icon on the
navigation bar.

Step 2
The shopping list screen should be displayed.

Adding a New Item to the Shopping List

Step 1
Type a new item name in the text box and press enter.

Step 2
The new item should be displayed in your shopping list.

31

Removing an Item From the Shopping List

Step 1
Open the shopping list screen. Touch and drag to the
right on an item that you’d like to remove, as shown in
the screenshot below.

Step 2
The item should now be removed from the list.

Checking & Unchecking Shopping List Items

Step 1
Tap on the checkbox next to the item you want to check
off.

Step 2
The item should now be checked off and moved to the
bottom of the list.

32

Shopping Recommendations
Navigating to the Recommendations Screen

Step 1
From the homescreen, tap on the shopping icon in the
navigation bar.

Step 2
The shopping screen will be displayed.

Entering Shopping Preferences

Step 1
Slide the shopping preference and maximum store
distance bars as desired.

Slider Descriptions:
● Shopping Preference is the priority of saving

time by including stores closer to you versus
saving money by including stores with lower
prices. Slide this to the right if you are mainly
interested in saving time, or to the left if you
would prefer to save more money at the
expense of time.

● Maximum Store Distance indicates how far
away you’re willing to drive to reach nearby
stores.

33

Getting Shopping Recommendations

Step 1
After entering your shopping preferences, press the
pink map button to request recommendations.

Step 2
Depending on the number of stores that have items
you’re shopping for, you will see results sorted by
distance away from your current location.

Navigating to a Store

Step 1
Tap on the store you’d like to shop at.

Step 2
Google maps will start navigating to the store from your
current location.

34

Monitoring Inventory
Navigating to the Inventory Screen

Step 1
From the home screen, tap the inventory icon in the
navigation bar.

Step 2
If you have any sensors setup and measuring items,
they will be displayed in your inventory here. To set up
new sensors, see “Sensor Setup & Installation”.

35

Resetting an Inventory Sensor
Step 1: Press the Reset Button
Press the reset button located on the back side of the
sensor device.

Step 2: Wait 2 Minutes
The sensor device will reset its configuration, including
wifi settings, to the default state. It will need to be set up
again.

Step 3: Set Up the Device Again
See “Sensor Setup & Installation” for instructions on
how to set up the device again.

