Multi-Context **Shopping Optimization**

Maxwell Garton Karla Montoya **Ethan Shoemaker Jesrik Gomez Nathaniel Wernimont Arnoldo Montoya** Advisor: Goce Trajcevski

Problem

- Too many combinations of shopping possibilities for consumers to make the best decision
- No one store has the lowest prices for every item

Users

• Everyday people • Frugal customers • Families

Uses Simplify grocery shopping

Solution

- Sensors placed within a user's home that automatically track grocery item levels
- Mobile app:
- Track inventory
- Curate shopping list • Deliver shopping suggestions
- Save money
- •Remember to buy grocery items

Design Requirements

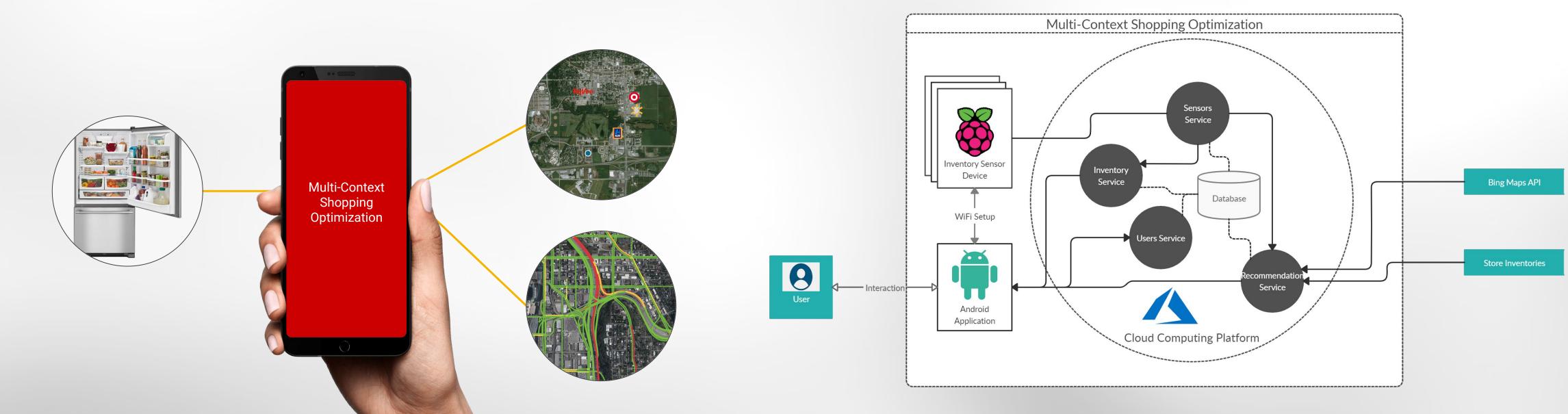
Functional Requirements

- Weight sensors
- Inventory tracking
- Cost-effective routing
- Manual inventory modification

Non-Functional

- Horizontally scalable
- Secure from attacks
- Easy to use UI
- Straightforward sensor setup

Operating Environment


- Android device
- Weight sensor
 - Microcontroller & weight sensor
 - Cold temperatures
 - Within closed container

Design Approach

Concept Sketch

Block Diagram

How it Works

1. User sets up weight sensor(s).

2. Application monitors inventory.

3. An item is added to the shopping list if it's low or runs out.

4. Route a user to grocery stores based upon store location and item prices.

Testing Environment

- Dockerized containers
- Local Machines
- Microsoft Azure

Engineering Standards & Design Practices • HTTPS

- Iterative prototyping
- gRPC Microservices
- IEEE 802.11 Modular Design
- IP and TCP Object Oriented

Testing Strategy Automated functional testing Manual user testing •Unit tests